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1 Abstract

Random graphs provide important models for a range of social, technological, and biological sys-
tems. The structure of these graphs is represented by an adjacency matrix A, where Aij = 1
whenever node i and j are connected, and Aij = 0 otherwise. The eigenvalues of these matrices
are important in determining the behaviors of networked systems, from the transition to chaos in
random neural networks, to epidemic thresholds for infections propagating through human pop-
ulations. While the distribution of the eigenvalues of random n × n matrices as n → ∞ is well
understood, not much is known about the eigenvalues of random n×n matrices at finite scale. Here,
we present deterministic approaches to analyze the eigenspectra and investigate the connections be-
tween regular graphs and random graphs via patterned edge removal. When viewed in a sequential
manner, the effects of systematic edge removal exhibit surprising regularity. This thesis introduces
the problem along with our approaches and presents numerical investigations for n = 3, 4, 5 and
n = 10. We express edge removal as matrix multiplication, find an analytical expression for the
coefficients of the characteristic polynomial in terms of the matrix entries, and use simultaneous
diagonalization in order to study this problem. Furthermore, we prove that the eigenspectrum
of the complete graph with one edge removed is the same regardless of which edge we choose to
remove. Finally, our numerical investigation suggests that when two edges are removed, there are
four unique eigenspectra formed, including the trivial eigenspectrum, regardless of n.
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2 Introduction

In this section, we will present introductory concepts from graph theory and linear algebra used
throughout this thesis.

2.1 Graph Theory

A graph is a mathematical object containing n nodes, or vertices, and with connections, or edges,
between some pair of nodes. We can assign each node some arbitrary label i = 1, 2, . . . , n [2].
Furthermore, a graph G has vertex set V (G) and edge set E(G), where an edge from node i to
node j is denoted by the 2-tuple (i, j). The idea of direction of an edge is reflected in the order in
which we write the edge. A graph G is directed if every (i, j) ∈ E(G) is an ordered 2-tuple, and G
is undirected otherwise. A graph is simple if there are no self-loops, that is, edges of the form (i, i),
and there is at most 1 edge between any pair of nodes.

Suppose G is a graph with the vertex set V (G) and the edge set E(G). Moreover, |V (G)| = n. Let
us define the matrix A ∈Mn×n(F ) such that for i, j ∈ V (G),

Aij =

{
1 if (i, j) ∈ E(G)

0 otherwise

With this definition, A is the adjacency matrix representation of G. We also note that A is sym-
metric if G is an undirected graph. Furthermore, if λ1, λ2, . . . , λk ∈ F are the eigenvalues of A with
the corresponding eigenvectors v1, v2, . . . , vk ∈ Fn, then they are the eigenvalues and eigenvectors
of G.

We can characterize different graphs with the definitions above. For example, the null graph is
the graph with V (G) = E(G) = ∅. We are particularly interested in the complete graph, Kn, on n
nodes. This is the graph such that for every pair of nodes i, j and i 6= j, there exists, without loss
of generality, the edge (i, j). Thus the matrix representation of Kn is

[Kn]ij =

{
1 if i 6= j

0 otherwise

For example, for n = 3, then

[K3] =

0 1 1
1 0 1
1 1 0


We can capture everything about a graph with its matrix representation, and thus it is possible to
use results from linear algebra in order to analyze graphs further.

2.2 Linear Algebra

To begin, we introduce a classic result from linear algebra. The matrices A,B are similar if there
exists P such that A = P−1BP . Notice that if λ is an eigenvalue of A, then

A~v = λ~v ⇐⇒ P−1BP~v = λ~v ⇐⇒ BP~v = λP~v ⇐⇒ B~v = λ~v
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Thus A,B share the same eigenvalues.

The n×n matrix Q is orthogonal if QT = Q−1, where QT is the transpose of Q. The n×n complex
matrix U is unitary if U∗ = U−1, where U∗ is the conjugate transpose of U . A matrix C is circulant
if it is of the form

C =



c0 c1 c2 . . . cn−1

cn−1 c0 c1
...

... cn−1 c0
. . .

. . .
. . .

c1 . . . cn−1 c0


= circ

(
c0 c1 . . . cn−1

)︸ ︷︷ ︸
~c

That is, given a generating row vector ~c, the first row of C is ~c, the second row of C is ~c shifted 1
entry to the right, the third row of C is ~c shifted 2 entries, etc. Each row of C is a cyclic shift of
the previous row [3]. Furthermore, the eigenspectrum of C can be expressed analytically as

λm =

n−1∑
k=0

ckω
k

where ω = e−2πim/n, the nth complex root of unity. The corresponding eigenvectors are given by

y(m) =
1√
n

(
1 ωm ω2m . . . ω(n−1)m

)
An immediate corollary of this result is that there exist U and U−1 unitary matrices such that

U−1CU = D

where D is the diagonal matrix with the eigenspectrum of C on its diagonal [3].

Another relevant result from linear algebra that we want to introduce is simultaneous diagonaliza-
tion. Let (V, 〈·, ·〉) be a finite-dimensional complex inner product space with 〈x, y〉 = x∗y, for all
x, y ∈ V , where x∗ is the conjugate transpose of x. Recall that a linear transformation T : V → V
is Hermitian (self-adjoint) if for all x, y ∈ V, 〈Tx, y〉 = 〈x, Ty〉. Let A be the transformation matrix
of T with respect to some basis B of V , then A = A∗. Moreover, suppose A is a collection of
transformation matrices of commuting Hermitian linear transformations on V , that is, AB = BA
for A,B ∈ A. Then V has a basis consisting of eigenvectors for all A ∈ A.

3 Deterministic Approach

3.1 Statement of Problem

Currently we are equipped with various probabilistic tools to investigate random n × n matrices
as n → ∞, but these tools are not applicable for random matrices at finite scale. In this thesis,
we attempt to develop a deterministic way to approach random n × n matrices. First, we fix the
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number of nodes, let that number be n, and consider the adjacent matrix of the complete graph on
n nodes, which is defined by

[Kn] = circ
(
0 1 1 . . . 1

)︸ ︷︷ ︸
n

Note that [Kn] is a circulant matrix, and thus its eigenvalues are completely determined.

Suppose An×n is the adjacency matrix of some simple undirected graph G on n nodes, then it can
be argued that there exists a sequence S = (E1, E2, . . . , Ek) for some 1 ≤ k ≤ |E(G)|, such that Ei
is an n× n matrix and has exactly 2 non-zero entries and

A = [Kn]−
k∑
i=1

Ei

Similarly, for the directed case, there exists a sequence S = (E1, E2, . . . , Ek) for some 1 ≤ k ≤ |E(G)|
such that Ei is an n × n matrix and has exactly 1 non-zero entry and the expression of A above
holds. Furthermore, this thesis claims that S is determined by the complement of A. This concept
is best explained with an example. Let

A =

0 0 1
0 0 1
1 1 0


then in the undirected case, let

E1 =

0 1 0
1 0 0
0 0 0


and thus A = K3 − E1. In addition, in the directed case, let

E1 =

0 1 0
0 0 0
0 0 0

 and E2 =

0 0 0
1 0 0
0 0 0


then A = K3 − E1 − E2 . We note that the Ei’s are the decomposition of the complement matrix
of A, say AC , which is defined by

AC = J − In −A = Kn −A

where J is the all-ones n×nmatrix and In is the n×n identity matrix. This is a formal representation
of what we will refer to in this thesis as edge removal. In general, edge removal can be thought
of as letting an entry of the complete matrix be 0, that is, (i, j) is removed if and only if we let
[Kn]ij = 0. Suppose we have a simple undirected or directed graph G on n nodes, then we can reach
G by removing a certain sequence of edges from Kn, the complete graph on n nodes, which motivates
our investigation on the effect of edge removal on the complete graph and its eigenspectrum. This
is a novel approach in studying random matrices, as this allows us to make conclusions without
letting n→∞.
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3.2 Edge Removal As Matrix Multiplication

As introduced above, edge removal can be expressed as matrix subtraction. However, it is natural
to seek a more well-studied representation of edge removal. In this section, we look to express edge
removal as matrix multiplication. Notice that [Kn] is an invertible matrix, and therefore the set of
the columns (or rows) of [Kn],

β =


~v1 =



0
1
1
...
1
1


, ~v2 =



1
0
1
...
1
1


, . . . , ~vn =



1
1
1
...
1
0




forms a basis for Rn. We prove the following lemma.

Lemma: For all A ∈ Mnn(R), there exist vectors ~ci of length n (for i ∈ {1, 2, . . . , n}), such that
for k ∈ {1, 2, . . . , n},

Ai,k = ~ci · ~vk where · is the inner product

Proof. Fix an adjacency matrix A ∈Mnn(R). Let the set of rows of A be α = {~r1, ~r2, . . . , ~rn} , then
there exist the linear combinations

(~ri)
T =

n∑
j=1

ci,j~vj (1)

where i ∈ {1, 2, . . . , n} and ci,j ∈ R. Define ~ci ∈ Rn such that

~ci := (ci,j)
n
j=1 (2)

It follows that

Ai,k = (~ri)
T
k where i, k ∈ {1, 2, . . . , n} (3)

=

n∑
j=1

ci,j(~vj)k (4)

= ci,1(~v1)k + ci,2(~v2)k + · · ·+ ci,n(~vn)k (5)

The vector [(~v1)k, (~v2)k, . . . , (~vn)k], such that l ∈ {1, 2, . . . , n} is the kth row of Kn, which is also
~vk since the adjacency matrix of Kn is symmetric. Thus we have

Ai,k = ~ci · ~vk (6)

where · is the usual dot product.

Theorem: For any A ∈Mnn(R), there exists T ∈Mnn(R) such that TKn = A.

Page 6



Proof. We construct the transformation matrix T ∈Mnn(R) such that

Ti,j = ci,j

Now, we show that T (Kn) = A. Let ~v =
(
~v1, ~v2, . . . , ~vn

)
, then

T (Kn) =


c1,1 c1,2 . . . c1,n−1 c1,n
c2,1 c2,2 . . . c2,n−1 c2,n

...
cn,1 cn,2 . . . cn,n−1 cn,n

~v

=


~c1
~c2
...
~cn

(~v1, ~v2, . . . , ~vn)

T (Kn)i,j = ~ci · ~vj where · is the inner product

= Ai,j (follows from lemma)

We have shown that given an adjacency matrix A of a graph G on n nodes, there exists a trans-
formation matrix T such that A = T [Kn]. Furthermore, we have proved the analytical form of
T . This is true in particular for A, the adjacency matrix for the complete graph with some edges
removed. A downside of this transformation approach is that this T cannot be used repeatedly on
Kn, as the columns of A = T [Kn] are not always linearly independent. Furthermore, an extension
of this approach is to study the eigenspectrum of T . If we found that Kn and T share the same
eigenvectors, then a direct corollary would be

A~v = (T [Kn])~v = T ([Kn])~v = Tλ~v = λ(T~v) = λω~v

where λ is an eigenvalue of [Kn] and ω is an eigenvalue of T . It would follow that λω is an
eigenvalue of A. Thus we would be able to express the eigenspectrum of A in terms of products of
the eigenvalues of both [Kn] and T . However, it can be the case that there is no general expression
of the eigenspectrum of T , and we wish to further investigate this topic in future work.

3.3 Coefficients Of The Characteristic Polynomial

Since the eigenvalues of A are the roots of its characteristic polynomial, an alternative approach is
to study its characteristic polynomial. The eigenvalues can then be found using existing efficient
numerical root-finding methods. As mentioned before, edge removal from the complete matrix on
n nodes can be seen as a change in the entries of [Kn], and thus it is important to express the
characteristic polynomial of A in terms of its entries. This section employs the results from The
Coefficients Of The Characteristic Polynomial In Terms Of The Eigenvalues And The Elements Of
An n × n Matrix by Dr. Bernard P. Brooks. Let us express the characteristic polynomial of the
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matrix A as

CA(x) = (−1)n det[A− xI]

=

n∑
k=0

ckx
k

where ck are the coefficients of the xk terms. It is known that ck can be computed by summing the(
n
k

)
determinants of the matrices created by replacing k of the diagonal elements of matrix A with

−1 and the remaining elements in those corresponding rows and columns with 0 [1]. For example,
consider

A =


1 2 3 4 1
1 0 5 1 4
1 2 3 4 5
4 5 4 1 2
1 3 4 5 2


Thus there exists a direct connection between the coefficients of the characteristic polynomial of
adjacency matrices after edge removal. First, we notice that trace(Kn) = 0, and it remains 0 even
after edge removal. In addition, it is known that the coefficient of the xn−1 term is the trace of
the matrix, and thus is always 0. We can also say that the sum of the eigenvalues is always 0. Let
c =

(
cn cn−1 . . . c1 c0

)
be the vector of the coefficients of the characteristic polynomial of [Kn].

Given that edge (i, j) is removed from Kn, resulting in the adjacency matrix A, we are interested
in c′ =

(
c′n c′n−1 . . . c′1 c′0

)
, the coefficient vector of A. In particular, we are interested in

c− c′ = (ck − c′k)nk=0

For fixed k, we can express ck − c′k as sum of determinants [1]. Thus ck − c′k is the sum of

(
n− 2
k

)
determinants. For example, consider

[K3] =

0 1 1
1 0 1
1 1 0


with CK3

= x3+c2x
2+c1x+c0. Since Kn is a circulant matrix, we can find an analytical expression

for the characteristic polynomial for Kn. Suppose edges (1, 2) and (2, 1) are removed, then let

A =

0 0 1
0 0 1
1 1 0


and CA(x) = x3 + c′2x

2 + c′1x+ c′0. As stated before, c2 = 0, and c0 = det(A). Then we can write
c1 − c′1 as

(−1)3

∣∣∣∣∣∣
0 1 0
1 0 0
0 0 −1

∣∣∣∣∣∣− (−1)3

∣∣∣∣∣∣
0 0 0
0 0 0
0 0 −1

∣∣∣∣∣∣
Given an adjacency matrix, we can compute the change in the coefficients of the characteristic poly-
nomials from the characteristics polynomial of [Kn]. We hope to develop an analytical expression
of the coefficients of [Kn] is k edges removed in terms of sums of determinants in future work.
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3.4 Simultaneous Diagonalization

In this section, we pose the edge removal problem through the lens of matrix theory. Consider simple
and undirected graphs, and thus the adjacency matrices we are concerned with are symmetric, binary
and have only 0 on the diagonal. Let’s introduce some notation. Let J be the n×n matrix with all
1 entries. In addition, we will denote the eigenspectrum of the adjacency matrix A by λ(A). Given
adjacency matrix A of the graph G on n nodes, recall that the complement of A is defined by

Ac = J − I −A = Kn −A

where Kn is the adjacency matrix of the complete graph on n nodes, and thus we have that
A = Kn − Ac. We can decompose Ac into a sum of matrices E1, . . . , Ek for 1 ≤ k ≤ |E(G)| such
that Ek is symmetric, and has exactly 2 non-zero entries. For example, when n = 3,0 0 1

0 0 0
1 0 0

 =

0 1 1
1 0 1
1 1 0

−
0 1 0

1 0 0
0 0 0

−
0 0 0

0 0 1
0 1 0


The adjacency matrix Kn of the complete graph is circulant, and thus we can ultilize its well-
determined properties. Its spectrum can be expressed analytically as

λj =

n−1∑
i=1

ωkj for j = 0, . . . , n− 1

where ω = e
2πi
n . Now, the next step is to investigate how λ(Kn) changes as we subtract the Ek’s.

Note that this is analogous to removing edges from the complete graph on n nodes. Here, we have a
discrete perturbation when changing the entries of Kn directly, which diverges from traditional per-
turbation theory. The problem can now be formulated as: For A,B,C ∈Mn×n(R), if C = A+B,
and λ(A), λ(B) are known, what can we say about λ(C)? If A,B are arbitrary matrices, this is a
difficult question to ask, but we are concerned with a very specific types of matrices.

Suppose A,B are Hermitian complex matrices and AB = BA. Suppose A,B ∈ A, and consider
C = A+B. By the simultaneous diagonalization result, there exist P and P−1 such that

P−1CP = P−1(A+B)P

= P−1AP + P−1BP

= DA +DB = DC

where DA, DB , DC are diagonal matrices with the eigenvalues of A,B,C, respectively, on the diag-
onal. Here, we are able to express λ(C) as a sum of λ(A) and λ(B). Studying the commutator of
any pair of the Ei’s is the logical next step.

Because Kn and Ek’s are real and symmetric matrices, they form a Hermitian set of matrices. It
is left to check if they commute. For example, for n = 3,0 1 1

1 0 1
1 1 0

0 1 0
1 0 0
0 0 0

 =

1 0 0
0 1 0
1 1 0


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0 1 0
1 0 0
0 0 0

0 1 1
1 0 1
1 1 0

 =

1 0 1
0 1 1
0 0 0


We can see that they do not commute, but observe that KnEk = (EkKn)T . This means that we
cannot apply the theorem directly, and the question remains, what can we say about λ(Kn +Ek),
given such a precise relationship between Kn and Ek. Generally, there is no immediate result about
the eigenspectrum of a sum of matrices, except for some bounds on their eigenspectrum.

4 Numerical Investigation

In our numerical investigation, we investigate directed graphs of size n = 3, 4, 5 and n = 10.

4.1 Methodology

First, we fix a sequence of edges R to remove from Kn, so that we get to the zero n × n matrix.
For example, for n = 3, suppose

R = {(1, 2), (2, 3), (3, 2), (2, 1), (1, 3), (3, 1)}

Then E(K3) \ R = ∅. At each removal step, we iterate over all entries of [Kn] with some edges
removed, temporarily remove that entry, and record the eigenspectrum of the resulting matrix.
Going back to our example, at the first step of removal, we remove edge (1, 2) from K3, that is,

A =

0 0 1
1 0 1
1 1 0


Next, we record the eigenspectrum of the following matrices0 0 1

1 0 1
1 1 0

 ,

0 0 0
1 0 1
1 1 0

 ,

0 0 1
0 0 1
1 1 0

 ,

0 0 1
1 0 0
1 1 0

 ,

0 0 1
1 0 1
0 1 0

 ,

0 0 1
1 0 1
1 0 0


We can then define the 3× 3× 3 array M as follows

Mij := the eigenspectrum (expressed in a vector of length 3) of K3

with edges (1, 2) and (i, j) removed

We repeat this process for K3 with edges (1, 2) and (2, 3) removed, etc. The entries of the array M
can then be colour coded, depending on the entry removed along with the predetermined removal
path. In particular, the entries will be of the same colour if removing those entries at the removal
step produces the same eigenspectrum.

4.2 Examples

Suppose the removal sequence

S =
{

(1, 2), (3, 2), (3, 1), (1, 3), (2, 3), (2, 1)
}
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1. Remove (1, 2), then we have

A1 =

0 0 1
1 0 1
1 1 0


and M is

1 2 3

1

2

3

1 2 3

1

2

3

From this plot we can see that there are 4 unique eigenspectra produced. In particular, the
adjacency matrices in the following sets produce the same eigenspectra.

C1 =


0 0 1

1 0 1
1 1 0


C2 =


0 0 1

0 0 1
1 1 0


C3 =


0 0 1

1 0 1
0 1 0

 ,

0 0 1
1 0 0
1 1 0


C4 =


0 0 1

1 0 1
1 0 0

 ,

0 0 0
1 0 1
1 1 0


Notice that C1 is the eigenspectrum of the matrix with no change. C2 is the matrix with the
edge opposite from (1, 2), i.e. (2, 1), removed. C3 is the matrices with edges with the heads
or tails being 1 or 2. Finally, C4 is the rest of the variations of A.

2. Remove (1, 2) and (3, 2), then we have

A2 =

0 0 1
1 0 1
1 0 0


and M is
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1 2 3

1

2

3

1 2 3

1

2

3

3. Remove (1, 2), (3, 2), and (3, 1), then we have

A3 =

0 0 1
1 0 1
0 0 0


and M is

1 2 3

1

2

3

1 2 3

1

2

3

4. Remove (1, 2), (3, 2), (3, 1), and (1, 3) , then we have

A4 =

0 0 0
1 0 1
0 0 0


and M is
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1 2 3

1

2

3

1 2 3

1

2

3

5. Remove (1, 2), (3, 2),(3, 1), (1, 3), and (2, 3), then we have

A5 =

0 0 0
1 0 0
0 0 0


and M is

1 2 3

1

2

3

1 2 3

1
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6. Remove (1, 2), (3, 2),(3, 1), (1, 3), (2, 3), and (2, 1) , then we have

A6 =

0 0 0
0 0 0
0 0 0


and M is
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4.3 The Number of Unique Eigenspectra - “Clusters”

We employ the Monte Carlo method to investigate the number of unique eigenspectra, or clusters,
produced at each step of the edge-removal process described above.

4.3.1 n=3

The number of possible edges we can remove is 6, thus there are 6! possible sequences of edges
that we can remove. In this experiment, 1000 sequences of edges were randomly chosen, and we
recorded the average number of clusters formed.

1 2 3 4 5 6
removal step

1

2

3

4

the number of clusters

Figure 1: The average number of clusters at each removal step for n = 3
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4.3.2 n=4

The number of possible sequences of edges to remove is 12!. This experiment is repeated 1500 times.

2 4 6 8 10 12
removal step

1

2

3

4

5

6

the number of clusters

Figure 2: The average number of clusters at each removal step for n = 4

4.3.3 n=5

The number of possible sequences of edges to remove is 20!. This experiment is repeated 1500 times.
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5 10 15 20
removal step

2

4

6

8

10

the number of clusters

Figure 3: The average number of clusters at each removal step for n = 5

4.3.4 n=10

The number of possible sequences of edges to remove is 90!. This experiment was repeated 1000
times.
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Figure 4: The average number of clusters at each removal step for n = 10
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5 Discussion

In this section, we will discuss the directed case, similar to the numerical investigation above. First,
the eigenspectrum of the complete matrix with the first edge removed is independent from which
edge was removed. Intuitively, this is because the labeling of the nodes is completely arbitrary. To
formalize this idea, let us prove the following claim.
Claim: Let G1, G2 be graphs on the same n nodes such that

(G1)rc =

{
0 r = c or r = i, c = j

1 otherwise
and (G2)rc =

{
0 r = c or r = k, c = l

1 otherwise

In other words, G1 is the complete graph with edge (i, j) removed and G2 is the complete graph
with edge (k, l) removed. Then G1 and G2 are isomorphic. We denote this by G1

∼= G2.

Proof. Recall that the graphs G1, G2 are isomorphic if there exists a bijection, say ϕ, from V (G1)
to V (G2) such that (i, j) ∈ E(G1) if and only if (ϕ(i), ϕ(j)) ∈ E(G2). In terms of matrix rep-
resentation, the graphs G1, G2 with adjacency matrices A1, A2 are isomorphic if there exists an
orthogonal n× n matrix Q such that

A1 = QTA2Q

For n = 2, the claim is trivial, as there are only 2 possible edges to remove, and we can let ϕ(1) = 2
and ϕ(2) = 1 be the required bijection. For n ≥ 3, let ϕ be such that for x ∈ V (G1)

ϕ(x) =



k if x = i

l if x = j

i if x = k

j if x = l

x otherwise

Then ϕ is a bijection. In fact, its inverse is itself. Intuitively, ϕ can be thought of the mapping
from the vertex set of G1 to the vertex set of G2 such that if the node is not i or j, ϕ maps that
node to itself. Otherwise, if the node is i, then ϕ maps it to k. Analogously, ϕ maps j to k. If we
apply ϕ twice, i 7→ k 7→ i and j 7→ l 7→ j, while the other nodes stay the same. Thus ϕ ◦ ϕ = id.
Furthermore, it suffices to show the inverse and contrapositive of the statement “(i, j) ∈ E(G1)
if and only if (ϕ(i), ϕ(j)) ∈ E(G2) ”. Since only (i, j) and (k, l) are not in E(G1) and E(G2),
respectively, we have that

(i, j) /∈ E(G1) ⇐⇒ (ϕ(i), ϕ(j)) = (k, l) /∈ E(G2)

we have proved our claim. Thus G1
∼= G2.

From the matrix representation of isomorphic graphs, we can see that since Q is orthogonal, QT =
Q−1, and thus A1 and A2 are similar matrices. It follows that they share the same eigenvalues.
Thus we can conclude that the eigenspectrum resulting from removing the first edge from the
complete graph is the same regardless of which edge we choose to remove. The eigenspectrum gets
more complicated when 2 edges are removed, that is, removal step 1 in our numerical investigation.
The plots above suggest that there are 4 clusters of eigenspectra formed at the removal step 1,
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regardless of n. At the last removal step, there is 1 cluster formed, which is the eigenspectrum of
the zero matrix. It is important to note that if G1

∼= G2, then they have the same eigenspectrum,
however, the converse is not always true. There are cospectral graphs but not isomorphic, that is,
they share the same eigenspectrum, but are not isomorphic. The number of clusters formed can be
seen to follow a particular analytical function, which motivates our belief that this is a restriction of
a continuous, analytical function. We hope to further develop our approaches mentioned in previous
sections, classify the eigenspectra up to isomorphism, and seek an explanation for the numerical
results found, in particular, the potentially unique maximum number of the average number of
clusters.

6 Appendices

6.1 Appendix A: Mathematica Notebook

[Redacted as the author’s name can be found on Github]
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