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Abstract

Mathematical billiards is a dynamical system that models billiards in an idealised environ-
ment. The billiard ball is considered to be a point mass and satisfies the law of reflection when
interacting with the boundary; the shape of the mathematical billiard is arbitrary. These sim-
ple constraints lead to surprisingly deep and complex dynamics. We focus on billiards with
quadrilateral boundaries. The existence of periodic orbits in all polygons is currently one of
the most resistant problems in dynamics. This dissertation makes progress on this conjecture
and explores the existence of periodic orbits within squares, rectangles and parallelograms. We
provide alternative proofs to classical results for square billiards with additional insights and
connections to number theory. We also take a dynamical systems approach which enables the
use of bifurcation theory and parameter continuation. We introduce a novel continuation for-
mulation which bypasses the extreme degeneracies exhibited by mathematical billiards and use
it to compute branches of periodic solutions as a parameter varies the shape of the billiard from
a square to a rectangle and parallelogram. The insights gained from the numerical exploration
lead us to prove that there exist no period-4 orbits within the parallelogram and to show in a
computer-assisted manner the existence of a bifurcation diagram that exhibits a period-adding
sequence, where a periodic orbit has its period change under parameter variation in successive
jumps of four each time.
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Chapter 1

Introduction

Mathematical billiards shares many similarities to the game of billiards (pool) in reality. Fun-
damentally, both comprise of a billiard ball that bounces off the sides of a table. In reality,
the table is almost always a rectangle, but mathematical billiards can be played on tables of
arbitrary shapes and dimensions. Mathematical billiards ignore friction, takes the billiard as a
point mass and assumes elastic collisions. As a consequence, the billiard trajectory will satisfy
the law of reflection (the angle of incidence equals the angle of reflection) when it bounces
off a boundary. Due to these constraints, mathematical billiards is readily applied to optics.
First posed as Alhazen’s problem [2] by Ptolemy in 150 AD, mathematical billiards has had
a plethora of applications including but not limited to the computation of π [17], quantum
computing [16] and mechanics [7, 32, 37, 38], pouring problems [29], Benford’s Law [34],
diffusion in Lorentz Gas [13] and the Riemann hypothesis [6].

Definition 1.1. A billiard table D ⊂ R2 is an open bounded connected domain with boundary
∂D.

We define the tuples (αi, Pi) where αi is the anti-clockwise angle between ∂D and the trajec-
tory after collision, Pi is the position of the collision on ∂D. The billiard map F determines
the next angle and position according to the law of reflection.

Definition 1.2. For a mapF , a set of points (α0, P0), (α1, P1), ..., (αn−1, Pn−1) with (αi, Pi) =
F (αi−1, Pi−1) for i = 1, ..., n is a periodic orbit (of least period n) if F (αn−1, Pn−1) =
(α0, P0) and (αi+k, Pi+k) 6= (αi, Pi) for any k with 0 < k < n.

In billiard theory, periodic orbits are of great interest and importance. For quadrilaterals,
each side is a line such that αi ∈ (0, π), it is then sufficient to consider trajectories with α0 ∈
(0, π2 ], because for a periodic orbit, the initial angle π − α0 yields a trajectory in the opposite
direction (time-reversal symmetry). The existing literature on periodic orbits within billiards
is separated into two categories, namely, smooth and non-smooth billiard tables D. If D is a
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2 CHAPTER 1. INTRODUCTION

smooth convex body, such as the circle and ellipse, then it typically exhibits more predictable
and non-chaotic behaviour such that phase portraits can be used to examine invariant curves in
phase space, periodic orbits and chaotic regions [18]. The regions are separated by caustics,
these are curves along which a billiard trajectory is tangent [30]. If D is non-smooth, its
point(s) of zero curvature are vertices or cusp points. The presence of these points result in
chaotic dynamics where a perturbation in the initial condition will drastically change the long-
term behaviour of the trajectory. Furthermore, such D do not have any caustics and periodic
orbits comprise of measure 0 in phase space [25].

Mathematical billiard has extensively been studied from the perspective of algebraic geom-
etry (moduli spaces), Teichmüller and ergodic theory with three textbooks published [10, 30,
34]. However there remains a myriad of unsolved open problems in billiards [14, 19]. Perhaps
the most well known are problem 3 of Katok’s five most resistant problems in dynamics [21]
and the Triangular Billiards Conjecture [31]:

Open Problem 1. Is there a periodic orbit for any polygonal D ⊂ R2?

Open Problem 2. Every trianglular D has a periodic orbit.

It is clear why Open Problem 1 is one of the most difficult problems in dynamics as the triangu-
lar billiard conjecture is a special case that is itself a 200-year old conjecture [31]. In general,
it is known that periodic trajectories are dense in polygons with angles that are rational multi-
ples of π [5]. We find through a literature review and correspondence with authors of billiard
textbooks and researchers that there is very little known regarding parallelogram billiards. The
non-existence of odd periodic orbits has been proven for parallelograms with angle π

3 radians
(two equilateral triangles glued together) [1]. Also the non-existence of stable periodic orbits
which persist under perturbations do not exist for parallelograms with angle π

4 radians [30]. We
take a different approach using ideas from dynamical systems to study billiards which extend
more readily to these open problems.

The dissertation is set up as follows. In chapter 2 we provide an overview on the theory
for square billiards, we also provide alternative proofs, new insights including a connection
to number theory and extend the results to the rectangular billiard. In chapter 3, we present a
dynamical systems approach to the billiard problem. We demonstrate that this representation
satisfies the theoretical results from chapter 2 and discuss the degeneracy of billiards that leads
to a singular parameter continuation problem. Chapter 4 proposes a novel formulation that
addresses the degeneracy problems. We follow periodic orbits from the square to both the rect-
angle and the parallelogram. We present new and surprising results on the existence of periodic
orbits and bifurcations within the parallelogram. Finally computer code, numeric results and
proofs of lemmas can be found in the Appendix.



Chapter 2

Square Billiards

The square billiard is the simplest non-smooth billiard table, but the results are often briefly
skimmed over. It is introduced early on in billiard textbooks, typically alongside the circular
billiard [10, 30, 34]. The vertices of the square provide distinct behaviour from the circular and
convex tables, they are readily analysed by the powerful technique of unfolding.

We consider trajectories within the unit-square D = {(x, y)| 0 < x < 1, 0 < y < 1} as
the geometry of the trajectory is invariant under the rescaling of the square. For brevity, la-
bel each of the vertices A, B, C and D in anti-clockwise manner as depicted in Figure 2.1.
We identify the boundary of the square with the interval [0, 4) such that the sub-intervals
[0, 1), [1, 2), [2, 3), [3, 4) represents sides AB, BC, CD, DA, respectively. Thus P ∈ [0, 4)
and α ∈ (0, π). At the four vertices, the tangent line for reflection is not defined. We stipulate
that the trajectory terminates if the trajectory collides with the vertex. Interesting and important
dynamics occur when trajectories narrowly avoid the vertices [5].

Consider the following introductory examples of trajectories in the square. It is sufficient to
consider trajectories that initially leave side AB as the labelling of vertices is arbitrary. When
the trajectory leaves the boundary at an angle of α = π

2 , we have a period-2 orbit as illustrated
in Figure 2.1(a). If the billiard leaves with α = π

4 , we will have a period-4 orbit as shown
in Figure 2.1(b). Note that for panels (a) and (b), the angles remain constant throughout the
trajectory. In Figure 2.1(c), we have a period-6 orbit with α = atan(2) and P = 0.2. We show
later that the periodicity of almost all trajectories is uniquely defined by the initial angle; initial
positions that result in alternative behaviour are a set of measure 0. The square billiard has the
special and rare property that it is ergodically optimal [12]:

Definition 2.1. A billiard table is ergodically optimal if for all trajectories that avoid the ver-
tices, one of the following holds: the trajectory is either periodic or uniformly dense.
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4 CHAPTER 2. SQUARE BILLIARDS

Figure 2.1: Examples of periodic orbits in the square billiard. Panels (a) with (α, P ) =
(π2 , 0.5), (b) with (α, P ) = (π4 , 0.5) and (c) with (α, P ) = (atan(2), 0.2) show examples
of period-2, period-4 and period-6 orbits, respectively.

2.1 Unfolding billiards

Following the billiard trajectory inside a square billiard D can be difficult due to the myriad
of self-intersections. Suppose that, instead of the trajectory reflecting off the boundary, the
table itself reflects, so that the trajectory remains a straight line. For every collision between
the billiard and the boundary, we reflect the table based on the side of the collision. Figure
2.2 illustrates this for the first five reflections of an arbitrary initial condition. The trajectory
is shown in D in panel (a) and in a series of successively reflected tables in panel (b). We
denote unfolded representation as R2

S . Horizontal reflections of D correspond to the trajectory
colliding with the adjacent sides (BC & AD) relative to the initial orientation of D. Vertical
reflections correspond to the billiard colliding with the opposite sides (AB & CD). The unfold-
ing process is invertible, we can obtain the original trajectory in D by folding the tiling back
together.
Notice that in Figure 2.2(b) that the orientation of the square changes each time a collision
occurs. More precisely, there are four unique orientations of squares in R2

S ; see already in
Figure 2.3(a). We define a coordinate system on R2

S with orientation. The initial/original square
table is located at vertices {(0, 0), (0, 1), (1, 0), (1, 1)} and has positive orientation both in
horizontal and vertical directions. The reflected tables are then defined by the integer coordinate
vertices in R2

S with the following orientations:

Definition 2.2. For a tiled square with bottom-left vertex (x, y) ∈ R2
S ,

• if x is even then the square has positive horizontal orientation
• if x is odd then the square has negative horizontal orientation
• if y is even then the square has positive vertical orientation
• if y is odd then the square has negative vertical orientation
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Figure 2.2: A trajectory within the square billiard and the associated unfolding. Panel (a) illus-
trates five reflections of a trajectory starting from side AB. Panel (b) shows the corresponding
trajectory unfolded with five table reflections. Dotted black lines indicate the trajectory based
on the law of reflection.

2.2 Classical proof for periodicity conditions

From the unfolding process described in Section 2.1, there are four unique orientations. It
suffices to analyse the trajectory using the 2 × 2 square grid given by the four squares within
{(x, y)| 0 ≤ x ≤ 2, 0 ≤ y ≤ 2}, which we denote by KS . Figure 2.3(a) depicts KS with
an arbitrary trajectory and illustrate how trajectories disappear off the edge of the squares.
Borrowing verbatim from Strogatz [33]: “the trajectory reappears on the opposite side.” The
trajectory is given by several parallel lines, which is reminiscent of the flow on a torus. We
can equivalently represent our square as a torus by gluing the top and bottom edges together
to form a cylinder and then gluing the ends of the cylinder together as shown in Figure 2.3(b).
We then use the following fundamental result from differential geometry regarding geodesics
on a torus [28]:

Theorem 2.3. If the slope of the line in the square is rational/(irrational), then there is a closed
geodesic on the torus/(the closure is the entire torus).

The theorem readily extends to periodic orbits in the square billiard:

Corollary 2.4. If the trajectory within the square billiard is periodic, then the slope is rational.

Since we only require that the slope tan(α) is rational, the periodicity within the square billiard
appears to depend only on the initial angle and not the initial position. It is not immediately
clear with this argument that a rational slope is only a necessary condition for periodicity in the
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Figure 2.3: Equivalent representations of a trajectory in the square billiard. Panel (a) illustrates
the trajectory on KS with the four unique square orientations. In panel (b), the top and bottom
sides of KS are identified to form a cylinder and, subsequently, the adjacent sides are identified
to form a torus.

square, because it does not account for the trajectories that end in a vertex. Trajectories with
irrational slopes (that avoid vertices) are uniformly dense1 [10, 34]. Hence, the square billiard
table is ergodically optimal.

This is the standard proof given in billiard textbooks. The result is brief due to the advanced
mathematical concepts used. However the brevity sacrifices important properties within the
square billiard such as the non-existence of odd periodic orbits [11] and it is unclear what the
period of the billiard trajectory will be for a given rational slope.

2.3 Odd periods within the square billiard

In this section, we provide an alternative and more intuitive proof that reproduces the necessary
condition for periodicity and also provides the additional insight addressed earlier.

Proposition 2.5. There do not exist period-3 trajectories within the square billiard.

Proof. Suppose for the sake of contradiction that a period-3 trajectory exists. The period-3
trajectory must collide with the square boundary at exactly 3 unique points which we denote as
P, Q and R. Hence, the trajectory forms a triangle PQR inscribed within the square ABCD. Each
of these points must reside on a unique side of the square as it is impossible for the billiard to

1Remark: Textbook by Rozikov [30, Remark 3.1] states: “the trajectory is dense. This happens when the angle
at which we shoot the ball is an irrational multiple of π.” This statement is incorrect.
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collide twice in a row with the same side. We illustrate such a possible period-3 orbit in Figure
2.4; we denote the angles at which the trajectory leaves each side as α, θ and β; note that the
trajectory in Figure 2.4 is not a true solution due to error in reflection at R. The remaining angles
follow from the law of reflection. From triangle PBQ, we find that θ = π

2−α, and from triangle
QCR, we have β = α. Furthermore, α = π − β due to the quadrilateral APRD. Therefore,
we must have α = π

2 , but then the trajectory is a period-2 trajectory that only collides with the
boundary at two unique points, P and R; a contradiction.

Figure 2.4: Candidate period-3 orbit within the square ABCD. The triangle PQR describes the
trajectory and the angles α, θ and β are given by the law of reflection.

We cannot easily extend this geometric proof for other odd periods as the billiard trajectory
self-intersects for larger periods. This motivates the use of the unfolding technique introduced
in Section 2.1 which is immune to the self-intersection problem.

Instead of restricting ourselves to KS used in the classical proof, we allow the unfolding to
continue indefinitely on R2

S . If we denote the initial angle as α ∈ (0, π2 ], the slope of the trajec-
tory is tan(α). It suffices to consider only α ∈ (0, π2 ] as periodic trajectories with initial angles
in the interval (π2 , π), i.e., π−α, only differ in the direction of the billiard. Since we have time
reversal symmetry, we assume α ∈ (0, π2 ] in the sequel.

Theorem 2.6. If a billiard trajectory is periodic in the square then the slope of the trajectory
is rational. Furthermore, all periodic trajectories of the square have even period.

Proof. Consider a trajectory starting with (α, P ) where P is a distance of x0 away from vertex
A. In R2

S , a periodic orbit requires the trajectory to return back to a side AB at distance x0
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away from A. Suppose it takes p vertical reflections of the table and q horizontal reflections,
for some p, q ∈ N, before we return back to the initial position. The period is then p + q and
the slope of the trajectory tan(α) = p

q ∈ Q can be determined by using the dashed triangle
in Figure 2.5. Furthermore, the trajectory must intersect P again with positive vertical and
horizontal orientation as otherwise once we fold the tiling, the trajectory will be travelling in
the opposite direction (angle π − α). By Definition 2.2, this occurs when we have undergone
an even number of vertical reflections and an even number of horizontal reflections. Thus,
p = 2m and q = 2n for some m,n ∈ N, and the period is 2(m+ n). Hence, for trajectories of
the square to be periodic, the slope must be rational and the subsequent period is even.

Figure 2.5: Candidate trajectory in R2
S with p vertical and q horizontal reflections before re-

turning to the initial position P .

We see that periodicity on R2
S is determined almost entirely by the initial angle. However,

particular initial positions with rational slopes also result in non-periodic trajectories. The
rational slope is a necessary condition, but not sufficient. Trajectories with rational slopes
can end up in the vertices and thus are non-periodic and singular. These initial conditions are
referred to as pre-images of the vertices and are discussed in Section 2.4. The advantage of
the classical proof for periodicity in Section 2.3 is that it is more easily extended to higher
dimensions than the proof for Theorem 2.6. Inside the n-dimensional hypercube billiard, the
motion of the trajectory is reduced to rotation on the torus Tn−1 [34].

If the trajectory is periodic, then the unfolded trajectory will intersect P on side AB in-
finitely many times. The least period is when the trajectory first intersects P , or equivalently,
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the least number of collisions with the boundary before arriving back to the initial position and
angle. Consider the periodic orbit generated with an initial angle atan(pq ) where p

q ∈ Z. Setting

α = atan
(
dp
dq

)
for any d 6= 0 gives rise to an identical periodic orbit. Then the period p + q

is least if for all d ∈ {3, ...,min{p, q}}, p
d /∈ N and q

d /∈ N, which motivates the following
definition2.

Definition 2.7. Given a periodic trajectory with p vertical reflections and q horizontal reflec-
tions. The period p+ q is the least period of the trajectory if gcd(p, q) = 2.

Since the number of vertical and horizontal reflections is even, p = 2m and q = 2n for some
m,n ∈ N. If p + q is the least period, then gcd(p, q) = 2 which implies gcd(n,m) = 1.
Therefore n and m are co-prime. As a result of this, for any given initial angle/slope, simplify
the fraction tan(α) until the numerator and denominator are co-prime (irreducible). The least
period is twice the sum of the co-prime numerator and denominator. For example, to generate
a period-4 trajectory such as in Figure 2.1(b), we find n,m ∈ N such that 2(n+m) = 4 which
also satisfies gcd(n,m) = 1. The only such candidate is n = m = 1. Therefore, the initial
angle will be α = atan(1) = π

4 .
To generate a billiard trajectory with least period T , we can take n = 1 and m = T

2 −
1, or vice versa, which is guaranteed to satisfy Definition 2.7. However, this is the trivial
decomposition, there are typically other decompositions of T

2 into the sum of two co-prime
numbers available. To find the number of possible decompositions, we use Euler’s totient
function from number theory [24]. For any N ∈ N, Euler’s totient function ϕ(N) counts
the number of natural numbers k ∈ {1, . . . , N} such that gcd(k,N) = 1. The integers k
that satisfy this property are referred to as totatives of N . Note that the number of pairs3

(m,n) ∈ N×N, with gcd(m,n) = 1 and N = m+ n is equal to ϕ(N); a proof can be found
in Section A.1 located in the Appendix. For T = 2N , there are ϕ(N) unique angles in the
interval (0, π2 ] which produce a period-T trajectory within the square billiard.

The classical technique to compute Euler’s totient function is Euler’s product formula,
ϕ(N) = N

∏
p|N

(
1− 1

p

)
where the product is over the distinct prime factors of N . As an

example, consider periodic trajectories with period T = 10. The number of possible decom-
positions is ϕ(N) = 4, which are (up to order): T = 2(4 + 1) and T = 2(3 + 2); hence, there
are four different period-10 orbits with one, two, three and four points on the side AB of the
square billiard.

2A similar definition for the equilateral triangle is given in [3]
3Remark: This is sequence A225530 in OEIS.
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2.4 Vertex pre-images within the square billiard

In this section, we analyse singular trajectories in the square billiard. The initial conditions that
result in a singular trajectory are denoted as pre-images of the vertices; these are also referred
to as generalised diagonals in the literature [5]. Pre-images exist for both rational and irrational
slopes. The natural method of finding pre-images is to start at a vertex with varying initial
angles4, then the pre-images end up in the vertex by time reversal. Furthermore, there are
pre-images of different orders as some initial conditions may require many collisions before
ending up in a vertex and some require very few. In Figure 2.6(a) we depict a period-6 orbit
that narrowly avoids vertices A and B, Figure 2.6(b) displays a trajectory with the same initial
angle that collides with the vertices; we conclude that (α0, P0) = (atan(2), 0.5) leads to a
singular trajectory after one collision. Figure 2.6(c) shows a trajectory initialised at vertex A
with α0 = atan(32) and terminates at B after three collisions. Consider a trajectory starting from
a vertex, we define the order of pre-images as the total number of billiard reflections until we
terminate at another vertex. We can find the order of pre-images by examining the trajectory in
R2
S . In Figure 2.7, we have trajectories starting from vertex A with slopes of 4, 2

3 and 5
4 which

each have pre-images of order three, three and seven, respectively.

Figure 2.6: Examples of pre-images of vertices within the square. Panel (a) depicts a period-6
orbit that narrowly avoids vertex A and B. Panel (b) shows the pre-image of vertices A and B
for the initial angle atan(2). Panel (c) depicts a trajectory starting from vertex A with angle
atan

(
3
2

)
which reflects three times before terminating in vertex B.

Proposition 2.8. If a trajectory starts at a vertex with an irrational slope, then the trajectory
never collides with another vertex in the square billiard.

Proof. Suppose for the sake of contradiction that an irrational slope does result in the trajectory
encountering another vertex. Using its representation in R2

S , say the trajectory starts at (0, 0)
4We can initialize at a vertex as the billiard does not reflect from its initial position.
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and passes through the point (q, p). By Definition 2.2, the locations of the vertices must be in
Z× Z. Hence the slope of the line is then p

q ∈ Z and is rational; a contradiction.

Corollary 2.9. If a billiard trajectory starts at a vertex with a rational slope, then the trajectory
will always end up in a vertex in the square billiard.

With an irrational slope, the order of pre-images is infinite, because Proposition 2.8 implies
that we do not terminate at a vertex, and by Theorem 2.6, the trajectory is not periodic. On
the other hand, with a rational slope the order of pre-images is finite, because the trajectory
terminates at another vertex. The order of pre-images is well defined and depends only on the
period of the trajectory (not the slope itself) that the rational slope typically yields.

Proposition 2.10. For a trajectory in the square billiard that starts at a vertex with a slope that
yields period-T orbits when the initial position is not a pre-image of the vertex. Then the order
of pre-images is given by T

2 − 2.

Proof. Consider a trajectory starting from (0, 0) ∈ R2
S . Let m,n ∈ N such that gcd(m,n) = 1

and set the slope as m
n . By Theorem 2.6 and Definition 2.7, this gives a least period-T orbit

where T = 2(m+n) if we do not start from a pre-image of the vertex. By Proposition 2.8, the
trajectory intersects the point (m,n) which is a vertex. From (0, 0) to (m,n), we have m− 1
horizontal reflections and n − 1 vertical reflections. Thus from (0, 0), the trajectory collides
with with the boundary of the square billiard m + n − 2 times before terminating in (m,n).
Hence, the pre-image will be of order T2 − 2.

For example, the slopes 4
1 ,

3
2 ,

2
3 ,

1
4 all yield three pre-images as these slopes produce period-

10 trajectories within the square; see the green and magenta lines in Figure 2.7. Combining
Proposition 2.10 with Corollary A.2, there are ϕ(T2 ) angles that produce period-T trajectories
and all these angles, when initialised at a vertex, yield pre-images of order T2 − 2.
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Figure 2.7: Pre-images of the vertex A determined via forward trajectories from A on R2
S . The

trajectories in solid red, dashed green and dotted magenta are given by slopes of 5
4 , 4 and 2

3 ,
respectively. The solid black trajectory depicts a R2

S representation of a trajectory that visits
(α0, P0) and (π − α0, P0) in the square.

Proposition 2.11. 5 If a trajectory passes through a point P in the square billiard, with angle
α 6= π

2 , then it cannot return to P with angle π − α.

Proof. Suppose that there exits a trajectory starting with (α0, P0) on side AB and for some
k ∈ N, (αk, Pk) = (π − α0, P0) in D. We give a candidate trajectory that intersects (α0, P0)
and (αk, Pk) in the R2

S representation in Figure 2.7 (solid black line). An angle of π − α0

corresponds to the trajectory travelling from side AB to AD which requires a square with
positive vertical and negative horizontal orientation. By Definition 2.2, the bottom-left vertex
has odd x-coordinate and even y-coordinate. It is more convenient to work with the bottom-
right vertex which then must have even x and y-coordinates which we denote as (2n, 2m),
where n,m ∈ N. In R2

S , the trajectory intersects the points (P0, 0) and (2n− 2x0, 2m) which
gives the rise to the line: {(x, y) ∈ R2

S |y = m
n−x0 (x − x0)}. But at the midpoint of this

trajectory, where x = n, we will have y = m. Thus, the trajectory intersects (n,m), which is
a vertex, before reaching (2n− 2x0, 2m). Therefore, the trajectory encounters a vertex before
reaching (π − α0, P0).

5The proposition is reminiscent of illumination problems [34, 35].
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2.5 Rectangular billiards

The natural and most straightforward extension from the square is to the rectangle. The rectan-
gular boundary most accurately models a billiard table in reality where the aspect ratio of side
lengths is 2 : 1. Consider a rectangle with side lengths a and b, where b ≤ a. The aspect ratio
of the rectangle is the ratio of the greater side length versus the lesser side length (a square has
aspect ratio 1 : 1). The unfolded tiling for the rectangle is denoted as R2

R and is related to R2
S

by the linear transform: (x, y) −→ (ax, by). A sample unfolding with a period-6 orbit is given
in Figure 2.8.

Proposition 2.12. If a trajectory is periodic in the rectangle then the product of the slope of the
trajectory and aspect ratio of the rectangle is rational. Furthermore, all periodic trajectories
of the rectangle have even period.

Figure 2.8: Candidate periodic trajectory in R2
R with p vertical and q horizontal reflections

before returning to the initial position P .

The proof for Proposition 2.12 is almost the same as for Theorem 2.6. Here, the dashed
triangle has height pb and base qa, where p and q are the number of vertical and horizontal
reflections, respectively. The slope of the trajectory is tan(α) = pb

qa , where p
q ∈ Q. Rearranging

gives the necessary periodicity condition: a
b tan(α) = p

q ∈ Q. The period is p + q which is
even by the same orientation argument. By Definition 2.7, the period is least if gcd(p, q) = 2.
For trajectories with the irrational slope aspect ratio products, these will be uniformly dense
(provided they are not pre-images of the vertex).

2.5.1 Construction of periodic orbits within the rectangle

Given a fixed rectangle with side lengths a and b, where b ≤ a, we are able to construct a
least period-T orbit by the following process. We find p, q ∈ N such that T = p + q and
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gcd(p, q) = 2, for which there are ϕ(T2 ) unique combinations by Proposition A.1. The initial
angle will be chosen such that it satisfies α = atan( pbqa). Any non-degenerate rectangle will be
able to produce all even periodic orbits. The limiting case of a period-2 orbit requires special
attention: we take p = 2 and q = 0. This corresponds to a trajectory with infinite slope:
a vertical line. Therefore, α = π

2 produces a period-2 orbit for all rectangles! However, in
general, the angle required will depend on the aspect ratio of the rectangle. For example, a
rectangular billiard table with aspect ratio a

b = 2
1 will generate period-4 trajectories for angles

atan(12). But an angle of atan(12) in a rectangle with aspect ratio 4
3 produces period-10 orbits.

2.5.2 Vertex pre-images within the rectangle

The results for vertex pre-images in the square also translate over to rectangles. The only
difference is that we refer to the product of aspect ratio of the rectangle and slope compared to
just the slope in Section 2.4.

Proposition 2.13. In the rectangle, if a billiard trajectory starts at a vertex where the product
of the aspect rational and slope is irrational, then the trajectory never collides with another
vertex.

Corollary 2.14. In the rectangle, if a billiard trajectory starts at a vertex where the product of
the aspect rational and slope is irrational, then the trajectory will always end up in a vertex.

Proposition 2.15. In the rectangle, if the billiard trajectory starts at a vertex with a slope that
yields period-T orbits when the initial position is not a pre-image of the vertex. Then the order
of pre-images is given by T

2 − 2.

Remark 2.16. The pre-images of a rectangle with aspect ratio h are proportionally distributed
along the side length when compared to a square.

Remark 2.16 follows by applying the linear transform to the pre-image locations. We will
make use of this observation in Chapter 5.

2.5.3 Extensions to the parallelogram

It is tempting to apply a more general linear transform to R2
S that shears the squares into a

parallelogram. Note that this would not correspond to an unfolding process due to asymmetry
of an arbitrary parallelogram.

The unfolding technique fails for general parallelograms as many parallelograms may in-
tersect and there will be regions that are uncovered, i.e., an arbitrary parallelogram cannot
tessellate the entire plane. In the following chapters we will present a dynamical systems ap-
proach that avoids these problems.



Chapter 3

A Dynamical Systems Approach

Mathematical billiards is inherently a dynamical system that describes how the point mass
moves/evolves over time. However, the behaviour of billiards is not typically studied with
traditional dynamical systems techniques such as bifurcation theory, phase portraits and pa-
rameter continuation. Classical billiard theory utilises results from Teichmüller theory and
algebraic geometry, which produce elegant results such as in Chapter 2, but are difficult to gen-
eralise. In this chapter, we consider a dynamical systems approach despite the fact that billiards
exhibit stubbornly degenerate behaviour. The first step is to find a set of equations that model
the billiard trajectory from one collision to another collision.

3.1 Our map

For convenience, we now denote the sides AB, BC, CD, DA as sides 0, 1, 2 and 3, respectively.
Some figures selectively still use the old notation for clarity purposes. Let us map the four
sides of the square onto the interval [0,4). The interval [0,1) represents side 0, which is the
base side from which we start any initial condition.The intervals [1,2), [2,3), [2,3) respectively
represent sides 1, 2 and 3. Let P ∈ [0, 4) be the position at which the billiard collides with the
boundary. Given a position P , the side is determined by bP c where b·c is the floor function.
Then α ∈ (0, π) is given by the angle between the trajectory after collision and the line segment
{P + τ(dP e−P )| 0 ≤ τ ≤ 1} (anti-clockwise angle with respect to the side), where d·e is the
ceiling function.

15
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Figure 3.1: Example trajectory depicted with the positions P and angles α for each collision.

We define our map (αn+1, Pn+1) = F (αn, Pn) as follows; the derivation for the case of a
parallelogram can be found in the Appendix. For brevity, let xn = Pn − bPnc. Given initial
point (αn, Pn), what is the next side that the trajectory collides with?

bPn+1c =


bPnc+ 1 (mod 4), if αn ∈ (0, acot(1− xn)),
bPnc+ 2 (mod 4), if αn ∈ (acot(1− xn), π − acot(xn)),
bPnc+ 3 (mod 4), if αn ∈ (π − acot(xn), π).

Note that the billiard trajectory cannot collide with the same side in succession. For α = 0,
acot(1− xn), π − acot(xn), or π, the trajectory terminates at a vertex. We refer to
bPnc + 1 (mod 4) as the right-adjacent side, bPnc + 2 (mod 4) as the opposite side, and
bPnc+ 3 (mod 4) is the left-adjacent side.

The image (αn+1, Pn+1) = F (αn, Pn) depends on whether bPn+1c is one of the adjacent
sides or the opposite side.

αn+1 = f(αn, Pn) :=


π
2 − αn, if bPn+1c = bPnc+ 1 (mod 4),
π − αn, if bPn+1c = bPnc+ 2 (mod 4),
3π
2 − αn, if bPn+1c = bPnc+ 3 (mod 4).
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Pn+1 = g(αn, Pn) := bPn+1c+


tan(αn)(1− xn), if bPn+1c = bPnc+ 1 (mod 4),
1− xn − cot(αn), if bPn+1c = bPnc+ 2 (mod 4),
1 + xntan(αn), if bPn+1c = bPnc+ 3 (mod 4).

In terms of maps, we have a periodic orbit of period N if F (N)(α0, P0) = (α0, P0). Note
that any given trajectory comprises a maximum of four angles, namely {α0,

π
2 − α0,

3π
2 −

α0, π − α0}.

3.2 Surface representation of our map

The dynamics of the map can be seen through the billiard trajectories within the square which
have been presented throughout Chapter 2. We can also investigate the billiard trajectories by
studying the graph of the 2D map in (αn, Pn, αn+1, Pn+1)-space, Figure 3.2 shows a projection
of this graph in (αn, Pn, Pn+1)-space with the αn+1-coordinate visualised as a colour on the
graph. Notice that the surface is divided into disjoint segments according to the current side
bPnc, and the surface for each side is a vertical shift compared to the others. The modulo 4
operation in our map causes the discontinuity observed for sides bPnc = 1 and 2. It suffices
only to investigate our surfaces for bPnc = 1.

Figure 3.2: Surface plot of (αn, Pn) against Pn+1 coloured by αn+1.
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The sudden changes in colour on the surfaces indicate the boundary between the different
sides. For example, the transition from the pink-cyan segment (corresponding to 0 < αn+1 ≤
π
2 ) to the dark-blue segment (0 < αn+1 <

π
2 ) is the boundary between sides 2 and 3. The

boundary curves are given by setting α = acot(1 − xn)) and α = π − acot(xn). Note that
the distinct colour change from dark-blue to cyan for bPn+1c = 2 is not a boundary transition,
it is chosen such that we highlight the transition from αn+1 <

π
2 to αn+1 >

π
2 because this

indicates the direction of the billiard trajectory.

The graph in Figure 3.3 shows the first iterate of our map. By computing our map for N iter-
ations, we can easily generate surfaces to describe Pn+N and αn+N , whereas it is extremely
tedious to compose our map N times analytically. The intersections between the graph of the
N th iterate and the plane Pn+N = Pn are candidate points for a period-N orbit of our map.
Note that we also require αn+N = αn, which is not directly visualised in the (αn, Pn, Pn+1)-
space.

As mentioned earlier, billiards is not traditionally studied with numerical tools from dynam-
ical system theory. In all the billiard textbooks there is no remark regarding the non-existence
of odd periodic orbits. Our approach revealed these properties that we subsequently proved in
Proposition 2.5 and Theorem 2.6. Using dynamical systems techniques we can also visualise
this property for period-3 orbits.

Figure 3.3: Surface plot of (αn, Pn) against Pn+3 coloured by αn+3. The transparent red plane
is given by Pn = Pn+3.
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Figure 3.3 shows the third iterate of F together with the diagonal plane Pn+3 = Pn (red
transparent plane). From Figure 3.3, we observe that there are two segments of the surface,
that return to side 0 after three iterations. These two segments correspond to trajectories going
from side 0 7→ 1 7→ 2 7→ 0 or side 0 7→ 3 7→ 2 7→ 0. This can be seen via the colour given by
αn+3 matching π − αn, and can be reconstructed with the first iterate shown in Figure 3.2.

The curves of intersection between the plane and our surface imply that Pn = Pn+3 at these
curves. This is a necessary condition for there to exist a period-3 orbit, but not sufficient, be-
cause αn = αn+3 is also necessary. We could use a plot with αn+3 on the z-axis and examine
the intersection with the plane. Instead, we use the colour bar provided in Figure 3.3. Notice
that for the left intersection, αn < π

2 but αn+3 >
π
2 . Conversely, for the right intersection,

we find that αn > π
2 and αn+3 < π

2 . In both cases, αn+3 = π − αn. The limiting case
αn = π

2 exhibits a period-2 orbit and not a period-3 orbit; note the similarity to the proof by
contradiction used in Proposition 2.5. Therefore, this apparent intersection is not a period-3
orbit. Furthermore, there is, in fact, a discontinuity in the surface on the curves where the red
plane Pn = Pn+3 intersects. The two intersection curves are given by iterating our map three
times with α = acot(1 − xn) and α = π − acot(xn). These angles give trajectories that pass
through the vertex on the first iteration. This result coincides with Proposition 2.11, where a
trajectory that revisits an earlier position with angle π−αn must have passed through a vertex.

3.3 Jacobian for our map

In bifurcation theory, the Jacobian provides information on the stability and determines when
a bifurcation has occurred.

We can find the Jacobian for a single iteration of the map analytically as

DF (α, P ) =

[
∂f
∂α

∂f
∂P

∂g
∂α

∂g
∂P

]
,

where αn+1 = f(αn, Pn) and Pn+1 = g(αn, Pn) as defined in Section 3.1. Hence, we find
the three different cases, namely,

DF (α, P ) =



[
−1 0

(1− x)sec2(α) −tan(α)

]
, if α ∈ (0, acot(1− x)),[

−1 0

cosec2(α) −1

]
, if α ∈ (acot(1− x), π − acot(x)),[

−1 0

xsec2(α) tan(α)

]
, if α ∈ (π − acot(x), π).



20 CHAPTER 3. A DYNAMICAL SYSTEMS APPROACH

Suppose we have a period-N orbit where {(α1, P1), ..., (αN , PN )}When our billiard tra-
jectory avoids the vertices, our map is smooth which allows us to find the stability of the
periodic orbit as a product of Jacobians from one iteration:

DF (N)(α1, P1) =
N∏
i=1

DF (αi, Pi)

The first row of every matrix in the product will be
[
−1 0

]
and periodic orbits within the

square have even period; see Section 2.3. Therefore, the resulting product of these matrices
must have the first row

[
1 0

]
and the matrix DF (N) is lower triangular with eigenvalue 1 for

all periodic orbits. The presence of the eigenvalue 1 implies that our periodic orbits are non-
hyperbolic, a degeneracy that is expected because we have a family of periodic orbits (almost
any position is sufficient). It is expected that periodic orbits within the square/rectangle are
non-hyperbolic. Recall from Chapter 2 that the necessary condition for a periodic orbit in
the square is tan(α) ∈ Z. Thus, a small perturbation in the angle can qualitatively change a
trajectory from periodic to non-periodic.

By computing the finite difference approximations, we find that the Jacobian is independent
of the position and that the second row and second column entry is always 1. Hence, it is of
the form:

DF (N)(α, P ) =

[
1 0

h(α) 1

]
.

Therefore, our system is highly degenerate as both eigenvalues of the Jacobian are 1. The
potential cause for this degeneracy is that our angle does not vary much throughout a billiard
trajectory, there is a maximum of four unique angles for any given trajectory within the square
and rectangle. We find that orbits with a large number of possible angles, such exist in the
parallelogram and the triangle, the second row and second column entry is no longer 1. The
bottom left element ofDF (N)(α, P ) has a value h(α) that depends only on α. We were unable
to find a closed formula for h(α), although we think one exists that can be found with two-
dimensional induction. For n,m ∈ N, we perform the first iteration of induction on angles of
the form α = atann−11 , this is a period-2n orbit where the trajectory collides with the left/right
sides of the square twice and the bottom/top sides 2n−2 times. We can then reorder the product
to ensure that the adjacent collisions with the bottom/top occur first and in the middle, the rest
of the product consists of matrices from opposite collisions. We then perform induction on m
for angles of the form α = atann−1m which would then account for all possible angles.

3.4 Solving the degeneracy dilemma

We aim to examine how the existence of periodic orbits evolve as we change the shape of the
table. Parameter continuation is a numerical analysis technique used to study how solutions to
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dynamical/algebraic systems evolve as parameters are adjusted. We first consider the transition
from the square to the rectangle by changing the aspect ratio. We are able to compare our
numerical results with the theoretical results from Chapter 2. We then apply the continuation
method with minor adjustments from the square to the parallelogram for which little is known.

To find periodic orbits, we reduce our two-dimensional map into a two-dimensional system
of non-linear algebraic problems. Then this resolves to a classical root finding problem. The
naive first approach is to enforce a fixed point (α, P ) for the N th iterate of the map1.{

f (N)(α, P )− α = 0

g(N)(α, P )− P = 0
⇐⇒ F (n)(α, P )− I

[
α
P

]
= 0. (3.1)

The solutions to the system of equations (3.1) are non-regular as the Jacobian for our sys-
tem will be DF (n)(α, P ) − I which will always have two zero eigenvalues; see Section 3.3.
Therefore, iterative schemes such as Newton’s method cannot be used to track the parameter
dependent family. The essence is that the problem is not well posed due to existence of an
entire family of peridic orbits, since for any given periodic α there exists an infinite number of
suitable P . To address this problem, we reformulate the algebraic system such that we isolate
one unique periodic orbit and then follow this solution in a system parameter using parameter
continuation.

For conservative vector fields and Hamiltonian systems, the conventional method to deal
with families of periodic orbits is to reformulate the problem by introducing an additional term.
The term is a product of a new parameter multiplied with the derivative of some conserved
quantity (eg., the Hamiltonian) [15, 26]. This isolates the periodic orbits to only a single
value of the new parameter for which we could then perform parameter continuation. We
decided against using this technique for three reasons. Firstly, we have discrete maps rather
than the smooth continuous systems considered in the literature. Secondly, our billiard maps
are time-reversible and “time-reversible systems form an exceptional class” [26] for which
the approach has not been applied yet. Thirdly, for billiards it is difficult to find a candidate
conserved quantity since commonly the conserved term is derived from physical arguments
such as damping. In the billiard literature, it is known that, for smooth closed D, an area
form with the symplectic wedge product is invariant [34]. However no such results apply
to non-smooth D like our quadrilaterals. We suspect this is a major reason why parameter
continuation methods have not appeared in billiard literature. It is highly non-trivial as to how
to use parameter continuation to study billiards.

While the parameter continuation technique for conserved systems described above follows
an entire family of periodic orbits, we propose a novel reformulation which instead selects a
particular periodic orbit from the family to follow. We search for a solution measure that

1We have omitted the map for the rectangle billiard as it is a special case of the parallelogram map in Section
4.2.
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parametrises the family. Our first idea, arclength of a trajectory, does not suffice, because for
a given period, the arclength is invariant under the initial position. This can be proven with
unfolding as the different trajectories are simply horizontal translations in R2

S and, therefore,
arclength is preserved.

3.4.1 Area of a periodic orbit

Consider the following motivating example inspired by the pre-images of the vertex in Section
2.4. For a period-6 orbit with α = atan(2) we find that the only pre-image of the vertex on
the base is P = 0.5. In Figure 3.4 we depict period-6 orbits with initial conditions P0 =
0.25, 0.4, 0.5. Observe that as P0 approaches 0.5, the trajectory degenerates into a singular
trajectory. Furthermore, the two symmetric bands have an area that is degenerate for P0 = 0.5.

Figure 3.4: Varying the initial position (red dot) of a period-6 orbit with α0 = atan(2). Panels
(a), (b) and (c) depict initial positions of 0.25, 0.4 and 0.5, respectively.

From the theory provided in Section 2.4, we select the isolated periodic orbit that has
maximal area between the “bands”. We define a notion of area such that it can be calculated
cumulatively based on each iteration of the map rather than using the geometric structure at
the end, because this approach extends more readily to higher-order periodic orbits and other
boundaries. We propose the following cumulative area function:

Definition 3.1. A period-T orbit that visits positions {P0, . . . , PT−1}, has area
A = T −

∑T−1
i=0 ãi, where

ãi =


1
2(1− xi)xi+1, if bPi+1c = bPic+ 1 (mod 4),
0, if bPi+1c = bPic+ 2 (mod 4),
1
2xi(1− xi+1), if bPi+1c = bPic+ 3 (mod 4),

and xi = Pi − bPic.
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The values ãi represent an area outside of the bands, soA is maximal when the sum of ãi is
minimal. The additional term T ensures that the area A is positive as each cumulative area will
be less than the area of the domain. Furthermore, larger periodic orbits and larger shapes are
expected to have larger areas. Figure 3.5 gives a geometric interpretation of A. The measure A
represents the white area given by the period-6 orbit in the square. Starting from the point on
AB closest to B, the trajectory first collides with an adjacent side, and we calculate the area of
the red triangle created between the trajectory and the domain. The next step, again creates a
red triangle as we hit the side CD. However, the trajectory then moves to the opposite side AB
and the cumulative area does not change. We can prove, using the return map in Appendix A.2
for the square, that the sum of the remaining blue and green areas, which are not covered by
the adjacent triangles, is invariant for the given family of periodic orbits. In other words, the
sum of the blue and green areas in Figure 3.5 is constant for any P on AB.

Figure 3.5: Decomposition of the square based on a typical period-6 trajectory. The white area
depicts the intended measure of area of the orbit, the red triangles are used in the calculation of
the cumulative area and the sum of the blue and green areas are invariant.

Suppose we are interested in a particular period. We know from Chapter 2 the exact angles
required to produce an orbit with this period. Our definition of area is maximised when the
position is equal to the midpoint between the vertices and pre-images of the vertices. For
example, a period-4 orbit in the square requires α = π

4 . By Proposition 2.10, the order of
pre-images is 0. Therefore, the midpoint P = 0.5 of the vertices leads to a period-4 trajectory
that maximises the area. Figure 3.6 shows how A varies with P0 for the case of a period-4
orbit in panel (a) and a period-10 orbit in panel (b). Note that the area is minimal exactly at
the pre-images of the vertices and the vertices; a period-10 orbit with α = atan(4) will have
pre-images of order 3, which are located at 0.25, 0.5 and 0.75. The positions that maximise the
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area are then the successive midpoints 0.125 , 0.375, 0.625 and 0.875. Note that we will have
a problem for period-2 orbits with α = π

2 as the area is always 1, but it is a limiting case.

Figure 3.6: Visualisation of the area A from Definition 3.1 as P0 varies for the case in panel (a)
of the period-4 trajectories with fixed α0 = π

4 and in panel (b) the period-10 trajectories with
fixed α0 = atan(4).



Chapter 4

Parameter Continuation Methods

In this chapter we perform parameter continuation by following periodic orbits from the square
to the rectangle as a proof of concept. We then perform continuation from the square to the
parallelogram which uncovers and motivates surprising and novel results.

4.1 Square to rectangle continuation

In order to follow the periodic orbit with maximal A in the parameter that transforms the
square into a rectangle, we add the constraint dAdP = 0 such that the area is maximised; note that
the derivative is not defined at the minimum as seen in the non-smooth points in Figure 3.6.
However, since we also have the conditions that f (N)(α, P )−α = 0 and g(N)(α, P )−P = 0,
our system is over-determined with three equations and only two unknowns (α, P ). We decided
to drop the equation for the angle for three reasons. First of all, the equation for α results in a
non-invertible JacobianDF−I , for all periodic orbits in the square; see Section 3.3. Secondly,
if the position equation is satisfied, we must return with the same angle and have a periodic orbit
because after N iterations we cannot have π − α by Proposition 2.11 which implies that the
angle must be α. Thirdly, by Proposition 2.8 we know from the periodicity condition that there
exists a (α, h)-relationship. Therefore, in the square/rectangle, the position equation alone
determines periodic orbit solutions and the area optimisation constraint will isolate a particular
solution. Note that we have carefully chosen the order of equations with g(N)(α, P )− P = 0
first to avoid an eigenvalue 0. Hence, we define the system

G(α, P ) = 0 ⇐⇒

{
g(N)(α, P )− P = 0
dA
dP = 0

(4.1)

We use the iterative scheme of Newton’s method for equation (4.1):

25
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(
αk+1

Pk+1

)
=

(
αk
Pk

)
−DG(αk, Pk)−1G(αk, Pk),

where the Jacobian matrix DG(αk, Pk) =

[
∂g(N)(α,P )

∂α
∂g(N)(α,P )

∂P − 1
∂2A
∂α∂P

∂2A
∂P 2

]
is approximated by

the central difference method using step-size h = 10−6; see Appendix A.3 for details. We
determine that our Newton iterations have converged if both the `2 norm of successive dif-
ference and maximum function value lie below 10−6 and 10−8, respectively. Continuation
is performed as follows. Suppose we want to follow a period-N orbit which is given by the
initial point (α∗, P ∗) and has maximal area in the square. We then perturb the height of the
square to become a rectangle and find the new (α, P ) which satisfies equation (4.1) by using
Newton’s method with the initial guess (α∗, P ∗). Once the iterative scheme converges, we
perturb the height again and the new seed is the converged point from the previous height. In
the sequel, we consider a rectangle with base length 1 and the height is a parameter denoted h
which is also the aspect ratio of the rectangle. Parameter continuation yields solution branches
for h > 0, where we continue from h = 1 in both positive and negative directions. We ex-
amine the examples of two families of period-10 orbits with initial angle atan(4) and atan(23 ).
For each family, we continue branches starting from the four positions and two positions that
maximise the area, respectively; see Figure 3.6(b). The continuation for these initial conditions
are illustrated in Figure 4.1. Panel (a) illustrates that P0 remains constant as the aspect ratio h
is varied, whereas α0 increases as h increases. The precise relationship between α0 and h can
be seen with a projection onto the (α, h)-plane in panel (b), we find that α0 increases rapidly
from 0, as h increases, and quickly converges to π

2 . We will show later that α0 = atan(4h) and
α0 = atan

(
2
3h
)

for the families with initial angle tan(4) and atan(23 ), respectively.
The example is representative of the general continuation results from the square to the

rectangle: the position is invariant but the angle depends on h. The invariance of P0 is explained
by the fact that the pre-images on the base remain unchanged as h is varied; see Remark 2.16.
The exact relation between α0 and h can be found by using Proposition 2.12: A least period
p+ q orbit requires α = atan(hpq ) which is observed in the figure. As h increases, we require
a steeper α0 in order to collide with the same proportional position on the sides. Note that we
currently use a fixed step-size of 10−5; in future work a variable step size can be implemented
that adapts the step size according to the number of Newton iterations or the difference in α in
order to improve efficiency.



4.2. SQUARE TO PARALLELOGRAM CONTINUATION 27

Figure 4.1: Dependence of the initial position and initial angle against the aspect ratio for all
period-10 orbits shown in (h, α, P )-space in panel (a) and projection onto (h, α) plane in panel
(b).

4.2 Square to parallelogram continuation

The advantage of parameter continuation compared to unfolding and other theoretical tools is
that the ideas and code is readily extended onto other problems. We are able to follow periodic
orbits from the square/rectangle into the parallelogram with minor adjustments. We uniquely
define a general parallelogram with lower left angle γ and height h as depicted in Figure A.2.
The explicit formulation of the billiard map within the parallelogram and the derivation can be
found in the Appendix.

For parameter continuation, we use the area in Definition A.8 and the system of equations
(4.1) except now with two parameters, γ and h. The results from the previous section can be
reproduced by varying h while γ remains fixed at π2 . Hence, even though the setup with fixed h
and varying γ will result in convergence of solutions for equation (4.1), however, most will not
be periodic orbits as the angle equation is not satisfied. Unlike the square/rectangle, in the paral-
lelogram, we are able to return to the same position but with a different angle. Note that system
(3.1) is still ill-posed as the Jacobian is singular, however finite difference approximations to the
Jacobian DF (α, P ) associated with system (3.1) for the parallelogram, yields one eigenvalue
1. We believe that this is caused by the fact that the angle equation now depends on both α and
γ with an implicit dependence on P , there are a greater number of unique angles in a given
parallelogram trajectory than a square/rectangle. We perform parameter continuation using the
root finding problem (4.1) while monitoring the additional constraint: f (N)(α, P ) − α = 0.
Convergence now requires the `2 norm of successive differences to be below 10−6, the maxi-
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mum function value to be below 10−8 and satisfying the additional constraint is to within 10−6.

We state some intuitive results regarding small periodic orbits for which the proofs are only
slightly more involved than Chapter 2 but are provided in the Appendix A.3.

Proposition 4.1. There always exists a period-2 orbit for the parallelogram billiard.

Proposition 4.2. There do not exist any period-3 orbits for the parallelogram billiard.

4.2.1 Non-existence of period-4 orbits in the parallelogram

Parameter continuation following the least period-4 orbit in the square with (α0, P0) = (π4 , 0.5)
yields no branch for γ 6= π

2 . This suggests that there does not exist any least period-4 orbits
for general parallelograms with γ ∈ (0, π2 ). This is a surprising result as the square and rectan-
gular billiards exhibit infinitely many least period-4 orbits. We prove the non-existence using
algebraic, geometric and combinatoric arguments. The overview of the proof is as follows:
First we argue that, for period-4 orbits, it is sufficient only to consider trajectories that visit the
base of the parallelogram; then we account for all combinatoric possibilities of side collisions
for period-4 orbits and systemically eliminate them using our parallelogram map or by a geo-
metric contradiction. To assist with our proofs, we denote the sides of the parallelogram with
˜bP c ∈ {0, 1, 2, 3} such that the sides AB, BC, CD, DA are 0, 1, 2, 3 respectively.

We define the cutting sequence for any periodic orbit as the combinatorial sequence of
sides visited by the trajectory [30, 34]. For example, the cutting sequence 0123 corresponds to a
trajectory starting from the base and always colliding with the right-adjacent side, the sequence
length of four indicates a period-4 orbit. Furthermore, we stipulate that a legal cutting sequence
is such that consecutive values in the sequence cannot be the same, because a trajectory cannot
re-visit the same side immediately [36]. Note that the notation of some of the proofs follows
the derivation of the parallelogram map in Appendix A.3.

Proposition 4.3. For any parallelogram, a least period-4 orbit cannot have the cutting se-
quence 0202 or 1313.

Proof. Suppose for the sake of contradiction that there exists a least period-4 orbit with cutting
sequence 0202. Consider a trajectory starting from side 0 at x0 = P0 where xi = Pi = bPic

∼
and with initial angle α0. Using the parallelogram map, the cutting sequence 0202 corresponds
to: {

xi+1 = 1− xi + h(cot(γ)− cot(α0)),

αi+1 = π − αi,

where i = 0, 1, 2, 3. Back substituting and using the cotangent sum identity yields:
x4 = x0 + 4hcotα0. Enforcing the necessary period-4 condition x4 = x0 gives α0 =

π
2 which
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is a least period-2 orbit; a contradiction. Using an analogous argument for the 1313 sequence
provides the same conclusion.

An immediate consequence of Proposition 4.3 is that a period-4 orbit must involve colli-
sions with adjacent sides. This implies that it is sufficient to consider only trajectories that start
from side 0 of the parallelogram. Furthermore, in order for our cutting sequence to be legal,
the first number in our cutting sequence is 0 which implies that the second and fourth numbers
cannot be 0.

Lemma 4.4. For any parallelogram, the cutting sequences 010, 101, 232, 323 are impossible.

Proof. Suppose for the sake of contradiction that the cutting sequence 010 exists. Consider a
trajectory starting from side 0 at x0 = P0 where xi = Pi = bPic

∼
and withα0 ∈

(
0, atan h

1−x0+hcotγ

)
such that we collide with side 1. Then according to our parallelogram map: α1 = γ − α0 < γ.
But in order for the trajectory to travel from side 1 back to side 0, the map requires α1 ∈
(α′m, π) where α′m satisfies sin(γ+α′

m)
sin(α′

m) = −x0. Lemma A.5 implies that α′m ∈ (π − γ, π)

which requires γ ≤ α′m < α1; hence, we have a contradiction. The proof for the other three
sequences follow the same argument.

Figure 4.2: A branched tree showing every legal period-4 cutting sequence starting from side
0. The symbols underneath indicate why each sequence cannot yield a period-4 orbit.

Figure 4.2 shows a branched tree depicting all the legal cutting sequences for a period-
4 orbit. All sequences that include 010, 101, 232, 323 are impossible by Lemma 4.4, these
are marked with a × underneath. Note that the cutting sequence 0301 includes 010 as for
a period-4 orbit the starting side is arbitrary. Therefore, the sequence 0301 is equivalent to
3010 which includes the illegal 010. The black square � indicates that the trajectory 0202 is
impossible because of Proposition 4.3. For the remaining eleven possible sequences, we only
need to consider seven of these by using time-reversal symmetry. The sequences 0231, 0302,
0312, 0321 (marked with • underneath) are period-4 if and only if 0132, 0203, 0213, 0123 are
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period 4, respectively. Hence it remains to show that the seven unmarked sequences cannot be
period-4.

Lemma 4.5. For a parallelogram with γ ∈ (0, π2 ), the cutting sequences 0123, 0203, 0212,
0303, 0313 cannot yield period-4 orbits.

Proof. We show for these sequences that the angle after four iterations of the parallelogram
map does not coincide with the initial angle. For the cutting sequence 0123; α1 = γ − α0,
α2 = π − γ − α1, α3 = γ − α2 and α4 = π − γ − α3. Then α4 = 2π − 4γ + α0 = α0.
Hence, the angle only matches for the square/rectangle special case with γ = π

2 . Using an
analogous argument for the other cutting sequences we find that these only satisfy α0 = α4

when γ = 0.

Note that the two remaining cutting sequences of 0132 and 0213 pass this angle matching
test. We employ a geometric argument to demonstrate that these final two sequences cannot be
period-4 orbits.

Proposition 4.6. For a parallelogram with γ ∈ (0, π2 ), the cutting sequences 0132 and 0213
cannot be a period-4 orbit.

Proof. Suppose for the sake of contradiction that there exists a period-4 orbit with cutting
sequence 0132. This will take the form depicted in Figure 4.3 where the angles of reflection
are successively denoted by α, β, ε and θ. The positions of the collisions are given by P0, P1,
P2, P3 and the trajectory lines intersect at the point denoted O. By 4P0BP1 and 4P2DP3,
we get γ = α + β and γ = θ + ε, respectively. As AB and BC are lines, ∠OP0P1 = π − 2α
and ∠P0P1O = π − 2β. Using 4OP0P1, gives ∠P0OP1 = 2α + 2β − π. Then, with
�AP2OP0, we find that ∠P0OP2 = 2π − γ − α − ε. However, ∠OP0P2 = 2π − 2α − 2β,
because the trajectory is a straight line. Comparing the two expressions for ∠OP0P2 yields
β = 1

2(γ − α + ε). Combining this result with 4P0BP1 gives ε = γ − α. Then we use
�P1CP3O to conclude∠P1OP3 = 2π−θ−γ−β, and via alternate angles we find∠P0OP2 =
∠P1OP3 =⇒ 2α+2β = θ+γ+β =⇒ θ = α+ β−γ

2 . Combining this result with4P2DP3

gives γ− ε = α+ β−γ
2 . Substituting ε = γ−α yields α = α+ β−γ

2 =⇒ β = γ. This implies
α = 0 by using 4P0BP1, which corresponds to the trajectory terminating in vertex B and is
clearly not a period-4 orbit. This proof extends to the cutting sequence 0213 by a reflection in
the vertical axis.

Theorem 4.7. There do not exist any least period-4 orbits for the parallelogram billiard with
γ ∈ (0, π2 ).

Proof. In Propositions 4.3, 4.6 and Lemmas 4.4, 4.5 we account for all legal period-4 cutting
sequences and show that all these sequences cannot support a period-4 orbit in a parallelogram
with γ ∈ (0, π2 ).
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Figure 4.3: Candidate period-4 orbit with cutting sequence 0132 in a parallelogram with lower
left angle γ. The angles α, β, ε and θ are given by the law of reflection.

4.2.2 Period-6 and higher orbits

We are able to follow period-6 orbits from the square/rectangle into the parallelogram. We are
able to continue the branch from initial points α0 = atan(2) and P0 = 0.25 or 0.75 and find that
both branches cease to exist when the trajectory collides with the vertex. Unlike rectangular
billiards, where periodicity (almost) exclusively depends on the initial angle, the position plays
a much greater role in the parallelogram. The continuation is best understood with an animation
[8], in the left panels of Figure 4.4 we display snapshots of the animation at γ = π

2 , 1.5022,
1.4336, 1.3651. As we progress downwards, we find that the trajectory tends towards vertices
B and D resulting in a singular trajectory; the continuation terminates at γc ≈ 1.3651. In the
right panels of Figure 4.4, we plot P0 on the horizontal and P6 on the vertical axis. Period-6
orbits lie on the blue line P0 = P6, the red segments display g(6)(α0, P0). Therefore, if a red
point lies on P0 = P6, it may potentially be a period-6 orbit. Observe that as γ decreases from
π
2 , the number of positions that possibly support a period-6 orbit for the same α0 decreases.
For γ = γc + ε, where 0 < ε << 1, only P ≈ 0.4724 supports a period-6 orbit. Inspection of
Figure 4.4 suggests that there is a location on the side BC which may support a period-6 orbit
as P0 = P6. For γ = 1.3651, the intersection occurs at P0 = 1.15, however we check that
it is not a period-6 orbit as α0 6= α6. We conclude that the class of period-6 orbits born from
α0 = atan(2) on sides AB cease to exist for γ < γc as the parameter continuation covers all
the values of P0.

The other class of period-6 orbits that we can follow is with initial points α0 = atan(12) and
P0 = 0.5. Notice that in the square, this family is simply a 90-degrees clockwise rotation of
the previous family, however this relationship does not generalise into the parallelogram. The
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solution branch of period-6 orbits terminates when the trajectory collides with vertices B and
D; this occurs at γc ≈ 1.3592 which is slightly lower than the other period-6 family, never-
theless the behaviour is identical. At γc we find that no other positions can support a period-6
orbit.
For the higher periodic orbits we observe similar results, parameter continuation fails to ad-
vance once the trajectory has collided with a vertex. Furthermore we also find that once the
critical value γc is attained, no other points on the parallelogram support the periodic orbit. As
the period increases, γc increases indicating that the periodic orbit exists for a smaller range of
γ. The results for higher periodic orbits are summarised in the following table.

Period α0 P0 γc
6 atan(2) 1/4 1.3651
6 atan(1/2) 1/2 1.3592
8 atan(3) 1/6 1.4378
8 atan(1/3) 1/2 1.4378
10 atan(4) 1/8 1.4296
10 atan(1/4) 1/2 1.5117
10 atan(3/2) 1/2 1.4929
10 atan(2/3) 1/4 1.4927

Table 4.1: Results from following orbits with a given period. Columns two to four show,
respectively, α0, P0 and the minimum γc at which continuation with γ terminates.

4.2.3 Period-adding bifurcations

Our parallelogram map is piecewise smooth and piecewise continuous (smooth and continuous
on finitely many intervals). These maps typically exhibit border-collision bifurcations when
fixed points/periodic orbits cross a discontinuous point or a point where the derivative does
not exist [27]. Qualitatively, once the parameter crosses a discontinuity the period changes in
an additive manner rather than multiplicative such as in the case of period-doubling bifurca-
tion for continuous maps; this gives rise to the name period-adding bifurcation. The theory
for continuous piecewise-smooth maps require (typical) periodic orbits/fixed points where the
Jacobian cannot have eigenvalues +1 or −1 (non-hyperbolic) [27]. As quoted from [4]: “little
work has been reported on the analysis of discontinuous maps, which are becoming the subject
of increasing scientific interest.”

We find that we can observe a sequence of period-adding bifurcations by continuation from
the square billiard with γ = π

2 of a period-2 orbit with (α0, P0) = (π2 , 3.5); in this sequence,
each time the trajectory collides with a vertex (discontinuity), the period increases by +4. This
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Figure 4.4: The left panels depict parameter continuation of a period-6 trajectory. The right
panel shows the 6th iterate of the position map g against the initial position for various P0 and
α0 is determined by the parameter continuation. Each row corresponds to snapshots are taken
at γ = π

2 , 1.5022, 1.4336, 1.3651. See also [8] for an animation of this process.
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process is best visualised with an animation [8]. A snapshot of eight different γ-values is pro-
vided in Figure 4.6, where γ decreases for panels (a) to (h). Starting from the square, we find
that the period-2 trajectory tends towards vertex D and bifurcates into a period-6 orbit after
the collision with vertex D; see panels (a)-(c). The period-6 trajectory starts with α0 = π

2 but
the initial position has jumped onto CD. Furthermore, these orbits retrace the same path in the
opposite direction. In panels (d)-(e), γ decreases further such that the period-6 trajectory col-
lides with vertices B and D, resulting in a period-10 trajectory. The period-10 trajectory then
collides with the vertices to produce a period-14 orbit in panels (g)-(h). With each vertex colli-
sion, the trajectory continues onwards with two additional collision points on the angled sides
BC and DA; due to the retracing nature of this particular class of periodic orbits, the period
then increases by 4.

We used the following trick in order to follow trajectories through vertex collisions. We
start the continuation from a very high period, since a period-N orbit is also a period-kN orbit
where k ∈ N, this exploits the fact that non-least periodic orbits still satisfy system (4.1). We
note that this trick still fails to follow the generic periodic orbits through the vertices, as in
Section 4.2.2. We suspect that a reason why we are able to follow these non-generic periodic
orbits through vertices is because the class of periodic orbits exist for all γ 1. Intuitively as γ
decreases, there will exist another periodic orbit of the same class with a larger period dictated
by the period-adding bifurcation.

Figure 4.5(a) provides a bifurcation diagram showing the relationship between γ and the
positions visited of the periodic orbit, the vertical axis corresponds to the positions visited by
the trajectory. The positions of the vertices are depicted with the red lines. The existence and
death of each period can be seen with the intersection of the positions visited and red lines. We
find cascading behaviour: as γ decreases, the region of existence for each periodic orbit shrinks
accordingly; see also Figure 4.5(b). Figure 4.5(a) displays the relationship between γ and the
period. Observe that as γ decreases, the period increases and forms an envelope that depicts
the minimum and maximum γ which can support a particular period. Upon examination, this
appears to resemble a log-log relationship between γ and the period. We note that if the length
of the sides of the parallelogram is kept constant, rather than its height, the position remains in
the interval [0, 4). With this setup, vertex D always lies to the left of vertex B and we are unable
to continue to more slanted parallelograms. Hence, we are not able to observe the sequence
of period-adding bifurcations, because this requires the increasing slant, which increases the
range of positions [0, 2+ 2

hsinγ ) to fit the higher periodic orbits.

1the positions that support the periodic orbit do not vanish as we collide with the vertex in the case of the generic
orbits in the previous section, this is further discussed in the Appendix.
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Figure 4.5: Panel (a) shows the sequence of period-adding bifurcations in the (γ, P )-plane; the
blue and red curves indicate the positions visited by the periodic orbit and the locations of the
vertices, respectively. Panel (b) illustrates the intervals of γ and the periods they support. In
both panels computations were done up to period-54, that is, γ = 0.2988.
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Figure 4.6: Period-adding (+4) bifurcation within the parallelogram. The parameter γ de-
creases from panels (a) to (h). Panels (a)-(b) depict a period-2 orbit, (c)-(d) a period-6 orbit,
(e)-(f) a period-10 orbit and (g)-(h) a period-14 orbit. See also [8] for an animation of this
process.



Chapter 5

Conclusion

In this dissertation, we examined billiards within quadrilaterals. In particular we presented
theoretical results on periodic orbits within squares and rectangles using classical billiard the-
ory. We presented a dynamical systems approach which confirms the earlier results and is then
used to study the parallelogram for which little is known. Parameter continuation inspired a
proof for the non-existence of least period-4 orbits in the parallelogram and the existence of a
sequence of period-adding bifurcations. Future work would entail finding an analytical proof
for this sequence of bifurcations. We only found proofs for very special cases of piecewise-
continuous maps which assume linearity and injectivity [20, 22, 23].

The original goal of the project was to investigate the 200-year old open problem regarding
triangular billiards. It is more challenging to perform parameter continuation in the triangle as
we know very few periodic orbits within the triangle from which we could start the continua-
tion. Interestingly, the periodic orbits found in the parallelogram (Section 4.2.3) which retrace
the same path in the opposite direction is reminiscent of one of the very few known periodic
orbits which exist in the triangle and also have α0 = π

2 [31, 34]. Since triangles are bisections
of quadrilaterals, if we can prove the existence of periodic orbits in all quadrilaterals we may
be able to find a homeomorphism between any triangle and quadrilateral. Another intriguing
approach would be to use parameter continuation follow periodic orbits from a quadrilateral
and collapse one of the vertices in order to form a triangle. There is much more to be explored
but the early results from our dynamical systems approach yield exciting prospects for future
work.

37
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Appendix

Animations discussed in Chapter 4 can be found on Youtube [8].
All the code and documentation can be found on Github [9].

A.1 Euler totient function

Proposition A.1. The number of tuples (m,n) such that m,n ∈ N, gcd(m,n) = 1 and
N = m+ n is equal to ϕ(N), Euler’s totient function evaluated at N .

Proof. For any m,n ∈ N, where N = m + n we have gcd(m,n) = gcd(m,N). Since the
ordered pair (m,n) satisfies gcd(m,n) = 1, we must also have gcd(m,N) = 1. Therefore,
m is a totative of N and the number of ordered pairs is given by the number of totatives,
ϕ(N).

Corollary A.2. For T = 2N , there are ϕ(N) unique angles in the interval (0, π2 ] that produce
a period-T trajectory within the square billiard.

A.2 Square return map

We construct a return map which determines when the trajectory revisits the base side. We
will use the notation from Chapter 2, where the base is denoted as side AB. Recall that R2 is
covered by vertical and horizontal shifts with even magnitude of K2. The map x = x̃mod 2,
y = ỹmod 2 is surjective with (x̃, ỹ) ∈ R2 and (x, y) ∈ K2.

Proposition A.3. For a trajectory leaving the base side in KS with α ∈ (0, π2 ) and position
x0, the next return position on the base in K2 is given by:

x1 = x0 + 2cot(α) (mod 2).

Proof. Consider a trajectory starting from position x0 ∈ (0, 2) on the base with angle α ∈
(0, π2 ). Then, the position in R2 is x0 = x̃0. In R2, the trajectory will revisit the base when
we ỹ = 2k, for k ∈ N. The first revisit occurs when ỹ = 2; see Figure A.1. Using the
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Figure A.1: Trajectory within K2 in blue and within R2 (one horizontal translation).

triangle with height 2 and base x̃1 − x0 gives tan(α) = 2
x̃1−x0 . Combining this with the result

x̃1 = x1 (mod 2) yields x1 = x0 + 2cotα (mod 2).

Observe that the square return map is a circle/rotation map with rotation number 2cot(α).
A periodic orbit in the return map corresponds to a trajectory revisiting the base in the same
location, as long as the revisiting angle is also the same (which must be the case by Proposition
2.11) . By inspection, a periodic orbit of the return map exists if and only if the rotation number
is rational.

It may be tempting to simplify the return map to the form: xn+1 = xn+cot(α) (mod 1) as
done in [34]. However, this removes useful information as xn does not describe the revisited
position for a trajectory within the square. From Figure A.1, the square in the bottom right has
reversed horizontal orientation. When we revisit the base in this square, the true position of the
trajectory will be 1− x due to the orientation. Denote P̃n as the position on the base where the
trajectory visits, it is described by:

P̃n+1 =

{
P̃n + 2cot(α) (mod 2), if 0 ≤ P̃n + 2cot(α) (mod 2) ≤ 1,

2− [P̃n + 2cot(α)] (mod 2), if 1 ≤ P̃n + 2cot(α) (mod 2) ≤ 2.

We now show this explicitly for a period-6 trajectory with α = atan(2); the argument for higher
periodic orbits is more involved due to the increased number of different combinations of side
collisions.
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Figure A.2: The general parallelogram with height h and bottom left angle γ.

If α0 = atan(2), then we have:

P̃n+1 =

{
(P̃n + 1), (mod 2) if 0 ≤ (P̃n + 1) (mod 2) ≤ 1,

(1− P̃n), (mod 2) if 1 ≤ (P̃n + 1) (mod 2) ≤ 2.

Consider the trajectory with P0 = P̃0 ∈ [0, 1]. Then,

P̃1 = (P̃0 + 1)(mod 2) ∈ [1, 2]

= (1− P̃0)(mod 2)

= 1− P̃0 ∈ [0, 1]

Using mathematical induction we can show that P̃n+1 = 1 − P̃n ∈ [0, 1]. The return map has
a fixed point at P̃ = 0.5 and a derivative of −1 which implies a period-doubling bifurcation.
We cannot apply the genericity conditions as our map is piecewise smooth and continuous; see
Section 4.2.3.

A.3 The parallelogram map

Consider the parallelogram with height h and bottom left angle γ as depicted in Figure A.2.
Due to symmetry, it is sufficient to consider γ ∈ (0, π2 ] and h > 0.

We map each of the four sides onto the interval [0, 2 + 2h
sinγ ). The sub-interval [0, 1)

represents side 0, and the subsequent intervals [1, 1 + h
sinγ ), [1 + h

sinγ , 2 + h
sinγ ) and [2 + h

sinγ ,
2 + 2h

sinγ ) represent sides 1, 1 + h
sinγ and 2 + h

sinγ , respectively. Let P ∈ [0, 2(1 + h
sinγ ) be the

position at which the billiard collides with the boundary. Given the position, we note the side
at which the collision occurs by bP c

∼
where b·c

∼
is a modified floor function. We also define a

modified ceiling function in the following:
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Definition A.4. Let S be the set {0, 1, 1 + h
sinγ , 2 +

h
sinγ }, then b c

∼
, d e
∼

: [0, 2(1 + h
sinγ )) 7→ S

are the functions bxc
∼

= max {m ∈ S|m ≤ x} and dxe
∼

= min {m ∈ S|m ≥ x}.

We now define α ∈ (0, π) as the angle between the trajectory after collision and the line seg-
ment (P, dP e

∼
) (anti-clockwise angle with respect to the side). For brevity, let xn = Pn−bPnc

∼
.

Given initial point (αn, Pn), what is the next side that the trajectory collides with?

If bPnc
∼
∈ {0, 1 + h

sinγ }, i.e., the bottom or top side, then

bPn+1c
∼

=


bPnc
∼

+ 1
(

mod 2 + 2h
sinγ

)
, if αn ∈

(
0, atan

(
h

1−xn+hcotγ

))
,

bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
, if αn ∈

(
atan

(
h

1−xn+hcotγ

)
, atan

(
h

hcotγ−xn

))
,

bPnc
∼

+ 2 + h
sinγ

(
mod 2 + 2h

sinγ

)
, if αn ∈

(
atan

(
h

hcotγ−xn

)
, π
)
.

If bPnc
∼
∈ {1, 2 + h

sinγ }, i.e., the left or right side, then

bPn+1c
∼

=


bPnc
∼

+ h
sinγ

(
mod 2 + 2h

sinγ

)
, if αn ∈ (0, αm) ,

bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
, if αn ∈ (αm, α

′
m) ,

bPnc
∼

+ 1 + 2h
sinγ

(
mod 2 + 2h

sinγ

)
, if αn ∈ (α′m, π) ,

where αm satisfies sin(γ+αm)
sinαm

= h
sinγ − xn and α′m satisfies sin(γ+α′

m)
sinα′

m
= −xn. By using

a symbolic calculator, we can find explicit forms for αm and α′m. If sin(γ+α)
sinα = y, then α =(

2atan
(
1
2cot(γ2 )(−ytan2

(γ
2

)
+
√

(tan2
(γ
2

)
(y + 1) + y − 1)2 + 4tan2

(γ
2

)
− tan2

(γ
2

)
− y + 1

))
(mod 4).

The new angle and position depend on which side we collide we with. If bPnc
∼
∈ {0, 1+ h

sinγ }.

i.e., the bottom or top side, then

Pn+1 = bPn+1c
∼

+


sinαn

sin(γ−αn)
(1− xn), if bPn+1c

∼
= bPnc

∼
+ 1

(
mod 2 + 2h

sinγ

)
,

1− xn + h(cotγ − cotαn), if bPn+1c
∼

= bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

sinαn
sin(γ−αn)

xn +
h

sinγ , if bPn+1c
∼

= bPnc
∼

+ 2 + h
sinγ

(
mod 2 + 2h

sinγ

)
,
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and

αn+1 =


γ − αn, if bPn+1c

∼
= bPnc

∼
+ 1

(
mod 2 + 2h

sinγ

)
,

π − αn, if bPn+1c
∼

= bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

π − αn + γ, if bPn+1c
∼

= bPnc
∼

+ 2 + h
sinγ

(
mod 2 + 2h

sinγ

)
.

If bPnc
∼
∈ {1, 2 + h

sinγ }, i.e., the left or right side, then

Pn+1 = bPn+1c
∼

+


sinαn

sin(γ+αn)

(
h

sinγ − xn
)
, if bPn+1c

∼
= bPnc

∼
+ h

sinγ

(
mod 2 + 2h

sinγ

)
,

h
sinγ −

sin(γ+αn)
sinαn

− xn, if bPn+1c
∼

= bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

1 + sinαn
sin(γ+αn)

xn, if bPn+1c
∼

= bPnc
∼

+ 1 + 2h
sinγ

(
mod 2 + 2h

sinγ

)
,

and

αn+1 =


π − γ − αn, if bPn+1c

∼
= bPnc

∼
+ h

sinγ

(
mod 2 + 2h

sinγ

)
,

π − αn, if bPn+1c
∼

= bPnc
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

2π − αn − γ, if bPn+1c
∼

= bPnc
∼

+ 1 + 2h
sinγ

(
mod 2 + 2h

sinγ

)
.

Lemma A.5. The boundary values αm and α′m of for our parallelogram map reside in the
intervals (0, π − γ) and (π − γ, π) respectively.

Proof. By definition, α′m satisfies sin(γ+α′
m)

sinα′
m

= −xn with γ ∈ (0, π2 ) and α′m ∈ (0, π). The
right-hand side is negative and in order for the left-hand side to be also negative, the numerator
and denominator must be of opposite signs. We plot the numerator and denominator in Figure
A.3; observe that this occurs for α′m ∈ (π − γ, π). The same argument applies for αm with a
positive right-hand side.

A.3.1 Period-2 orbits within the parallelogram

It is natural to visualise a period-2 orbit that exists with α0 = π
2 that collides with the top

and bottom horizontal sides. However, as a corollary to the derivation, we have a proof that
there always exists also a period-2 orbit in the square when starting from the angled sides
with an angle of π

2 . We find that setting α0 = π
2 for any P ∈ (hcot(γ), 1) on side 0 or any

P ∈
(
1 + h

sinγ + hcotγ, 2 + h
sinγ

)
on side 1+ h

sinγ will exhibit a period-2 orbit; see Figure A.4.
There does not exist any period-2 orbits between the base/top sides and the angled right/left
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Figure A.3: Plot of αm against sin(αm) and sin(γ + αm) in red and blue, respectively.

Figure A.4: Period-2 trajectories between the angled sides of a parallelogram. The red trajec-
tories are give the minimum and maximum positions that collide with the opposite side.

sides as the return angle would not match α0. For γ ∈ (0, atan(h)), the base and top of the
parallelogram will not overlap. Therefore, for these γ, we cannot have any period-2 orbits
between the base and top. However, as a corollary to our parallelogram billiard map, we find
that period-2 orbits between the angled left/right sides exist for all parallelograms.

Corollary A.6. There always exists a period-2 orbit within the parallelogram billiard.

A.3.2 Period-3 orbits within the parallelogram

As with the square and rectangle, the parallelogram does not exhibit any period-3 orbits. We
use our geometric proof for the non-existence proof for period-3 orbits within the square in
Proposition 2.5 as inspiration. Note that we still must collide with three unique sides, the only
difference in argument is that we now have to account for two different cases: starting from the
base or on the angled side.
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Proposition A.7. There do not exist any period-3 orbits within the parallelogram billiard.

A.3.3 Parallelogram area function

The area of a periodic orbit for the parallelogram is defined analogously to the square/rectangle
special case given in Section 3.4.1. We are interested in the outside triangle areas when visiting
the adjacent sides.

Definition A.8. A period-T orbit that visits positions {P0, . . . , PT−1}, has area
A = T −

∑T−1
i=0 ãi, where xi = Pi − bPic

∼
,

if bPic
∼
∈ {0, 1 + h

sinγ },

ãi =


1
2(1− xi)xi+1sin(γ), if bPi+1c

∼
= bPic

∼
+ 1

(
mod 2 + 2h

sinγ

)
,

0, if bPi+1c
∼

= bPic
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

1
2xi(h− xi+1)sin(γ), if bPi+1c

∼
= bPic

∼
+ 2 + h

sinγ

(
mod 2 + 2h

sinγ

)
,

and if bPic
∼
∈ {1, 2 + h

sinγ },

ãi =


1
2(h− xisin(γ))xi+1, if bPi+1c

∼
= bPic

∼
+ h

sinγ

(
mod 2 + 2h

sinγ

)
,

0, if bPi+1c
∼

= bPic
∼

+ 1 + h
sinγ

(
mod 2 + 2h

sinγ

)
,

1
2xi(1− xi+1)sin(γ), if bPi+1c

∼
= bPic

∼
+ 1 + 2h

sinγ

(
mod 2 + 2h

sinγ

)
.

A.3.4 Numerical settings and results

When calculating the Jacobian for Newton’s method, we use central difference method for all
the derivatives with h = 10−6.

∂f

∂α
≈ f(α+ h, P )− f(α− h, P )

2h
For periodic orbits, we need a higher order map, we remedy this by simply adding superscripts
to all:

∂f (N)

∂α
≈ f (N)(α+ h, P )− f (N)(α− h, P )

2h
.

Denote A as our area function, the mixed partials also use central difference method except at
the end points which use forward and backward.

∂2A

∂P 2
≈ A(α, P + h)− 2A(α, P ) +A(α, P − h)

h2
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∂2A

∂α∂P
≈ A(α+ h, P + h)−A(α+ h, P − h)−A(α− h, P + h) +A(α− h, P − h)

4h2

Parameter continuation only terminates if both the `2 norm of the successive differences is be-
low 10−6, the absolute value of each component in F (α, P ) is below 10−8 and if the additional
constraint: f (N)(α, P )− α = 0 is satisfied to within 10−6.

For the continuation of the periodic orbits which exhibit the period-adding bifurcation in
Section 4.2.3, we show some of the numerical results in Figure A.5. Panel (a) shows the number
of Newton steps is 0 for large γ, this is when we follow the period-2 orbits as all period-2 orbits
maximise area, we do not need to perform any Newton iterations. All the other step counts are
either 2 or 3 which implies that parameter continuation is behaving appropriately (i.e., we have
not jumped onto a different solution branch). Panel (b) shows the area of each periodic orbit, the
jumps here indicate when a period-adding bifurcation has occurred. Observe that as γ decreases
(or as the period increases), the area decreases in a cascading manner. Note that the area plot
has been appropriately scaled as we are effectively following a period-1748648318376960000
orbit. Figure A.6 is a companion figure to 4.6 which is analogous to the left and right panels
of Figure 4.4. We vary P0 for a fixed α0 = π

2 which is determined by parameter continuation
and plot it on horizontal axis. On the vertical axis we have PN , where N = 2, 6, 10 and 14
for panels (a)-(b), (c)-(d), (e)-(f), (g)-(h), respectively. Period-N orbits lie on the blue line
P0 = PN , the red segments display the actual map value g(α0;P0). Therefore if a red point
lies on P0 = PN , it may potentially be a period-N orbit. For each panel in alphabetical order,
the γ is: π

2 , 0.8298, 0.7297, 0.5760, 0.5659, 0.4888, 0.4887 and 0.4488, respectively. Observe
that as γ decreases the measure of positions which support a period orbit also decrease but do
not tend to zero as in Section 4.2.2 and in Figure 4.4. This is potentially a reason for why we
are able to follow these solutions through vertices but are unable to for the solutions in Section
4.2.2.
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Figure A.5: Numerical results for the period-adding parameter continuation. Panel (a) and
panel (b) show the number of Newton steps and the area as we follow solutions in γ, respec-
tively.



52 REFERENCES

Figure A.6: Panels (a)-(b), (c)-(d), (e)-(f), (g)-(h) each depict the 2nd, 6th, 10th and 14th iterate
of the position map g for varying P0 with fixed α0 determined by the convergence of parameter
continuation. For each panel in alphabetical order, γ is: π

2 , 0.8298, 0.7297, 0.5760, 0.5659,
0.4888, 0.4887 and 0.4488, respectively. This is a companion figure to Figure 4.6.
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